The Neoproterozoic high-Mg dioritic dikes in South China formed by high pressures fractional crystallization of hydrous basaltic melts

2018 ◽  
Vol 309 ◽  
pp. 198-211 ◽  
Author(s):  
Qi-Wei Li ◽  
Jun-Hong Zhao
2021 ◽  
pp. M55-2019-50 ◽  
Author(s):  
K. S. Panter ◽  
T. I. Wilch ◽  
J. L. Smellie ◽  
P. R. Kyle ◽  
W. C. McIntosh

AbstractIn Marie Byrd Land and Ellsworth Land 19 large polygenetic volcanoes and numerous smaller centres are exposed above the West Antarctic Ice Sheet along the northern flank of the West Antarctic Rift System. The Cenozoic (36.7 Ma to active) volcanism of the Marie Byrd Land Volcanic Group (MBLVG) encompasses the full spectrum of alkaline series compositions ranging from basalt to intermediate (e.g. mugearite, benmoreite) to phonolite, peralkaline trachyte, rhyolite and rare pantellerite. Differentiation from basalt is described by progressive fractional crystallization; however, to produce silica-oversaturated compositions two mechanisms are proposed: (1) polybaric fractionation with early-stage removal of amphibole at high pressures; and (2) assimilation–fractional crystallization to explain elevated87Sr/86Sriratios. Most basalts are silica-undersaturated and enriched in incompatible trace elements (e.g. La/YbN>10), indicating small degrees of partial melting of a garnet-bearing mantle. Mildly silica-undersaturated and rare silica-saturated basalts, including tholeiites, are less enriched (La/YbN<10), a result of higher degrees of melting. Trace elements and isotopes (Sr, Nd, Pb) reveal a regional gradient explained by mixing between two mantle components, subduction-modified lithosphere and HIMU-like plume (206Pb/204Pb >20) materials. Geophysical studies indicate a deep thermal anomaly beneath central Marie Byrd Land, suggesting a plume influence on volcanism and tectonism.


Minerals ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 465 ◽  
Author(s):  
Kai Sun ◽  
Tao Wu ◽  
Xuesong Liu ◽  
Xue-Gang Chen ◽  
Chun-Feng Li

Mid-ocean ridge basalts (MORB) in the South China Sea (SCS) record deep crust-mantle processes during seafloor spreading. We conducted a petrological and geochemical study on the MORBs obtained from the southwest sub-basin of the SCS at site U1433 and U1434 of the International Ocean Discovery Program (IODP) Expedition 349. Results show that MORBs at IODP site U1433 and U1434 are unaffected by seawater alteration, and all U1433 and the bulk of U1434 rocks belong to the sub-alkaline low-potassium tholeiitic basalt series. Samples collected from site U1433 and U1434 are enriched mid-ocean ridge basalts (E-MORBs), and the U1434 basalts are more enriched in incompatible elements than the U1433 samples. The SCS MORBs have mainly undergone the fractional crystallization of olivine, accompanied by the relatively weak fractional crystallization of plagioclase and clinopyroxene during magma evolution. The magma of both sites might be mainly produced by the high-degree partial melting of spinel peridotite at low pressures. The degree of partial melting at site U1434 was lower than at U1433, ascribed to the relatively lower spreading rate. The magmatic source of the southwest sub-basin basalts may be contaminated by lower continental crust and contributed by recycled oceanic crust component during the opening of the SCS.


Minerals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1295
Author(s):  
Peijia Chen ◽  
Nianqiao Fang ◽  
Xiaobo Yuan

The Sanshui Basin is located at the northern continental margin of the South China Sea and characterized by a continental rift basin. The bimodal volcanic rocks in Sanshui Basin record the early Cenozoic magmatic activity in the South China Block, but the magmatic evolution that produced the bimodal volcanic rocks is poorly understood. Clinopyroxenes in bimodal volcanic rocks in the Sanshui Basin provide an opportunity to investigate magma during magma ascent. In this work, we classified nine types of clinopyroxene phenocrysts according to composition and texture in cogenetic basalt-trachyandesite-comenditic trachyte, while the composition of unzoned clinopyroxene have an evolution sequence of diopside-hedenbergite-aegirine along with an increase in trace element contents with a decrease of Mg#, indicating that the genesis of clinopyroxene was dominated by fractional crystallization in a closed magma system. However, the clinopyroxenes with reversed zoning and multiple zoning record the process of magma mixing and recharge indicating an open magma system. While fractional crystallization is the dominant process, magma mixing, recharge, and crystal settling were also found to influence magma evolution. Thermobarometric calculations showed that clinopyroxene crystallized a several structural levels in the crust during magma ascent. In this study, we established a magma plumbing system that provides new constraints for the magma evolution in the Sanshui Basin.


2008 ◽  
Vol 145 (4) ◽  
pp. 475-489 ◽  
Author(s):  
WU-XIAN LI ◽  
XIAN-HUA LI ◽  
ZHENG-XIANG LI

AbstractMiddle Neoproterozoic igneous rocks are widespread in South China, but their petrogenesis and tectonic implications are still highly controversial. The Guangfeng middle Neoproterozoic volcano-sedimentary succession was developed on a rare Sibaoan metamorphic basement (the Tianli Schists) in the southeastern Yangtze Block, South China. This paper reports geochronological, geochemical and Nd isotopic data for the volcanic rocks in this succession. The volcanic rocks consist of alkaline basalts, andesites and peraluminous rhyolites. SHRIMP U–Pb zircon age determinations indicate that they were erupted at 827±14 Ma, coeval with a widespread episode of anorogenic magmatism in South China. Despite showing Nb–Ta depletion relative to La and Th, the alkaline basalts are characterized by highly positive ɛNd(T) values (+3.1 to +6.0), relatively high TiO2and Nb contents and high Zr/Y and super-chondritic Nb/Ta ratios, suggesting their derivation from a slab melt-metasomatized subcontinental lithospheric mantle source in an intracontinental rifting setting. The andesites have significantly negative ɛNd(T) values (−9.3 to −11.1) and a wide range of SiO2contents (57.6–65.6%). They were likely generated by the mixing of fractionated basaltic melts with felsic melts derived from the Archaean metasedimentary rocks in the middle to lower crust. The rhyolites are highly siliceous and peraluminous. They are characterized by depletion in Nb, Ta, Sr, P and Ti and relatively high ɛNd(T) values (−3.0 to −4.8), broadly similar to those of the adjacentc.820 Ma peraluminous granitoids derived from the Mesoproterozoic to earliest Neoproterozoic sedimentary source at relatively shallow levels. We conclude that the Guangfeng volcanic suite is a magmatic response of variant levels of continental lithosphere (including lithospheric mantle and the lower-middle to upper crust) to the middle Neoproterozoic intracontinental rifting possibly caused by mantle plume activity.


Lithos ◽  
2014 ◽  
Vol 206-207 ◽  
pp. 147-163 ◽  
Author(s):  
Lian-Xun Wang ◽  
Chang-Qian Ma ◽  
Chao Zhang ◽  
Jin-Yang Zhang ◽  
Michael A.W. Marks

Sign in / Sign up

Export Citation Format

Share Document