scholarly journals Temporal variations in the incompatible trace element systematics of Archean volcanic rocks: Implications for tectonic processes in the early Earth

2022 ◽  
Vol 368 ◽  
pp. 106487
Author(s):  
Paul Sotiriou ◽  
Ali Polat ◽  
Brian F. Windley ◽  
Timothy Kusky
2021 ◽  
pp. 1-26
Author(s):  
Taylor A. Ducharme ◽  
Christopher R.M. McFarlane ◽  
Deanne van Rooyen ◽  
David Corrigan

Abstract The Flowers River Igneous Suite of north-central Labrador comprises several discrete peralkaline granite ring intrusions and their coeval volcanic succession. The Flowers River Granite was emplaced into Mesoproterozoic-age anorthosite–mangerite–charnockite–granite (AMCG) -affinity rocks at the southernmost extent of the Nain Plutonic Suite coastal lineament batholith. New U–Pb zircon geochronology is presented to clarify the timing and relationships among the igneous associations exposed in the region. Fayalite-bearing AMCG granitoids in the region record ages of 1290 ± 3 Ma, whereas the Flowers River Granite yields an age of 1281 ± 3 Ma. Volcanism occurred in three discrete events, two of which coincided with emplacement of the AMCG and Flowers River suites, respectively. Shared geochemical affinities suggest that each generation of volcanic rocks was derived from its coeval intrusive suite. The third volcanic event occurred at 1271 ± 3 Ma, and its products bear a broad geochemical resemblance to the second phase of volcanism. The surrounding AMCG-affinity ferrodiorites and fayalite-bearing granitoids display moderately enriched major- and trace-element signatures relative to equivalent lithologies found elsewhere in the Nain Plutonic Suite. Trace-element compositions also support a relationship between the Flowers River Granite and its AMCG-affinity host rocks, most likely via delayed partial melting of residual parental material in the lower crust. Enrichment manifested only in the southernmost part of the Nain Plutonic Suite as a result of its relative proximity to multiple Palaeoproterozoic tectonic boundaries. Repeated exposure to subduction-derived metasomatic fluids created a persistent region of enrichment in the underlying lithospheric mantle that was tapped during later melt generation, producing multiple successive moderately to strongly enriched magmatic episodes.


1992 ◽  
Vol 29 (7) ◽  
pp. 1448-1458 ◽  
Author(s):  
M. R. Laflèche ◽  
C. Dupuy ◽  
J. Dostal

The late Archean Blake River Group volcanic sequence forms the uppermost part of the southern Abitibi greenstone belt in Quebec. The group is mainly composed of mid-ocean-ridge basalt (MORB)-like tholeiites that show a progressive change of several incompatible trace element ratios (e.g., Nb/Th, Nb/Ta, La/Yb, and Zr/Y) during differentiation. The compositional variations are inferred to be the result of fractional crystallization coupled with mixing–contamination of tholeiites by calc-alkaline magma which produced the mafic–intermediate lavas intercalated with the tholeiites in the uppermost part of the sequence. The MORB-like tholeiites were probably emplaced in a back-arc setting.


Author(s):  
B.H. Морозов ◽  
B.H. Татаринов ◽  
И.Ю. Буров

The questions o f assessment and prédiction of potential charnels o f infiltration of radionuclides in géologie environment are discussed. This is specially important for underground allocation of the nuclear objects. The method of allows for spatial-temporal variations in a geological massif at ail hierarchical levels from régional tectonic processes up top peri-contour zones of chambers.


1991 ◽  
Vol 86 (10) ◽  
pp. 459-472 ◽  
Author(s):  
Keiichi Shiraki ◽  
Kenji Nagao ◽  
Takashi Nagao ◽  
Susumu Kakubuchi ◽  
Yukio Matsumoto
Keyword(s):  

2021 ◽  
pp. M56-2019-44
Author(s):  
Philip T. Leat ◽  
Aidan J. Ross ◽  
Sally A. Gibson

AbstractAbundant mantle-derived ultramafic xenoliths occur in Cenozoic (7.7-1.5 Ma) mafic alkaline volcanic rocks along the former active margin of West Antarctica, that extends from the northern Antarctic Peninsula to Jones Mountains. The xenoliths are restricted to post-subduction volcanic rocks that were emplaced in fore-arc or back-arc positions relative to the Mesozoic-Cenozoic Antarctic Peninsula volcanic arc. The xenoliths are spinel-bearing, include harzburgites, lherzolites, wehrlites and pyroxenites, and provide the only direct evidence of the composition of the lithospheric mantle underlying most of the margin. The harzburgites may be residues of melt extraction from the upper mantle (in a mid-ocean ridge type setting), that accreted to form oceanic lithosphere, which was then subsequently tectonically emplaced along the active Gondwana margin. An exposed highly-depleted dunite-serpentinite upper mantle complex on Gibbs Island, South Shetland Islands, supports this interpretation. In contrast, pyroxenites, wehrlites and lherzolites reflect percolation of mafic alkaline melts through the lithospheric mantle. Volatile and incompatible trace element compositions imply that these interacting melts were related to the post-subduction magmatism which hosts the xenoliths. The scattered distribution of such magmatism and the history of accretion suggest that the dominant composition of sub-Antarctic Peninsula lithospheric mantle is likely to be harzburgitic.


2021 ◽  
Author(s):  
Arianna Secchiari ◽  
Alessandra Montanini ◽  
Dominique Cluzel ◽  
Elisa Ferrari

<p>The New Caledonia ophiolite hosts one of most complete sections of a nascent arc, representing an excellent natural laboratory for investigating the origin and the evolution of subduction systems. The sequence, originated during the onset of the Eocene subduction [1, 2], is composed of ultra-depleted forearc harzburgites [3] overlain by a dunite-dominated transition zone (500m thick), in turn overtopped by mafic-ultramafic cumulate lenses. The ultramafic rocks of the transition zone (mainly dunites and wehrlites) most likely resulted from melt-peridotite reactions involving primitive arc tholeiites and boninitic magmas [2]. By contrast, dunite-pyroxenite and gabbronorite cumulates derive from H<sub>2</sub>O-poor depleted melts transitional between boninites and arc-tholeiites [2, 4].</p><p>In this contribution, we report the first occurrence of amphibole-bearing ultramafic lithologies in the New Caledonia arc sequence. Our study deals with a petrological and geochemical characterisation of a 2.5km x 5km composite, roughly snowball-shaped, intrusive body, consisting of pyroxenite, dunite, wehrlite, hornblendite and associated mafic-ultramafic, locally sheared, dikes from the Plum area (Massif du Sud).  The pyroxenite component, which forms the core of the intrusion, consists of coarse-grained websterites, mainly composed of weakly oriented orthopyroxene (~ 30-75 vol.%) and clinopyroxene (~ 20-40 vol.%), with variable amounts of edenitic amphibole (~ 2-30 vol.%). The amphibole generally occurs as poikilitic crystals or develops as coronas on pyroxenes. Highly calcic plagioclase (An= 83-96 mol %) is scarce in the pyroxenite body (~ 2 vol. %), but more abundant in the associated dikes (~ 10-50 vol.%). Clinopyroxene shows variable Mg# (0.82-0.92) and low Al<sub>2</sub>O<sub>3 </sub>(0.99-2.00 wt%). Likewise, amphibole yields high Mg# (0.712-0.865). Estimated equilibrium temperatures based on conventional pyroxene thermometry range between 870-970°C, whereas amphibole-plagioclase pairs provide slightly lower values (800-910 °C).</p><p>Whole rocks have moderately high Mg# (71-82) and REE concentrations one to five times chondritic values. The websterites of the main body show LREE-depleted (La<sub>N</sub>/Nd<sub>N</sub> = 0.5-0.8), weakly concave downward patterns, with flat HREE segments (Lu<sub>N</sub>/Tm<sub>N</sub> = 1.1-1.3). The mafic-ultramafic dikes display similar patterns, bearing depleted to flat LREE segments (La<sub>N</sub>/Nd<sub>N</sub> = 0.6-1) and positive Eu anomalies. For all the investigated lithologies, extended trace element diagrams indicate enrichments for FME (i.e. Rb, Ba, U) and Th, coupled to Zr-Hf depletion. Strong Sr positive spikes are only observed for the crosscutting dikes, while the pyroxenite body yields Sr negative anomalies.</p><p>Geochemical modelling shows that the putative liquids in equilibrium with the websterites have intermediate Mg# (57–63) and incompatible trace element patterns sharing remarkable similarities with the New Caledonia CE-boninites [5]. However, they significantly differ from the equilibrium melts reported for the other intrusive rocks of the sequence [1, 4], suggesting greater compositional variability for the liquids ascending into the Moho transition zone and lower crust. Our results support the notion that petrological and geochemical heterogeneity of magmatic products may be distinctive features of subduction infancy.</p><p> </p><p>References</p><p>[1] Marchesi et al., Chem. Geol., 2009, 266, 171-186.</p><p>[2] Pirard et al., J. Petrol., 2013, 54, 1759–1792.</p><p>[3] Secchiari et al., Geosc. Front., 2020, 11(1), 37–55.</p><p>[4] Secchiari et al., Contrib. Mineral. Petrol., 2018, 173(8), 66.</p><p>[5] Cluzel et al., Lithos, 2016, 260, 429–442.</p>


Author(s):  
David W. Deamer

Malcolm Walter was talking about the Pilbara region of Western Australia where some of the oldest known biosignatures of ancient life, in the form of extensive fossilized stromatolites, are preserved. The first potential stromatolite was discovered by graduate student John Dunlop, who was studying barite deposits at the North Pole Dome. Roger Buick went on to investigate the biogenicity of the stromatolites for his PhD (Buick, 1985) and Dunlop, Buick, and Walter published their results (Walter et al., 1980). In a prescient paper, Walter and Des Marais (1993) proposed that the ancient stromatolite fossils could guide the search for life on Mars. I have walked with Malcolm Walter through the Dresser formation where the fossils were found. It is humbling to realize that if time passed at a thousand years per second, it would take 41 days to go back in time to the first signs of life on our planet. In any description of events that occurred some 4 billion years ago, certain assumptions must be made. I will try to make assumptions explicit throughout this book, beginning here with the geochemical and geophysical conditions prevailing on the early Earth and Mars. I am including Mars not as an afterthought but because both planets had liquid water 4 billion years ago. Most of our understanding of planetary evolution comes from observations of our own planet, but it is now clear that the Earth and Mars were undergoing similar geophysical processes during the first billion years of the solar system’s existence, with an equal probability that life could begin on either planet. In a sense, the surface of Mars is a geological fossil that has preserved evidence of what was happening there at the same time that life began on the Earth. For instance, Martian volcanoes offer direct, observable evidence that volcanism was occurring nearly 4 billion years ago; making it plausible that similar volcanism was common on Earth even though the evidence has been completely erased by geological and tectonic processes.


1983 ◽  
Vol 47 (345) ◽  
pp. 473-479 ◽  
Author(s):  
D. K. Hallbauer ◽  
K. von Gehlen

AbstractEvidence obtained from morphological and extensive trace element studies, and from the examination of mineral and fluid inclusions in Witwatersrand pyrites, shows three major types of pyrite: (i) detrital pyrite (rounded pyrite crystals transported into the depositional environment); (ii) synsedimentary pyrite (round and rounded aggregates of fine-grained pyrite formed within the depositional environmen); and (iii) authigenic pyrite (newly crystallized and/or recrystallized pyrite formed after deposition). The detrital grains contain mineral inclusions such as biotite, feldspar, apatite, zircon, sphene, and various ore minerals, and fluid inclusions with daughter minerals. Most of the inclusions are incompatible with an origin by sulphidization. Recrystallized authigenic pyrite occurs in large quantities but only in horizons or localities which have been subjected to higher temperatures during the intrusion or extrusion of younger volcanic rocks. Important additional findings are the often substantial amounts of pyrite and small amounts of particles of gold found in Archaean granites (Hallbauer, 1982) as possible source rocks for the Witwatersrand detritus. Large differences in Ag and Hg content between homogeneous single gold grains within a hand specimen indicate a lack of metamorphic homogenization. The influence of metamorphism on the Witwatersrand pyrites can therefore be described as only slight and generally negligible.


Sign in / Sign up

Export Citation Format

Share Document