scholarly journals Corrigendum to “Down-regulation of B2R contributes to preeclampsia by inhibiting human trophoblast cell invasion and angiogenesis” [Pregnancy Hypertens. 21 (2020) 14–22]

2021 ◽  
Vol 26 ◽  
pp. 1
Author(s):  
Yanfang Peng ◽  
Dan Liu ◽  
Zhenyu Diao ◽  
Zhiyin Wang ◽  
Hailin Ding ◽  
...  
2020 ◽  
Vol 21 ◽  
pp. 14-22
Author(s):  
Yanfang Peng ◽  
Dan Liu ◽  
Zhenyu Diao ◽  
Zhiyin Wang ◽  
Hailin Ding ◽  
...  

Author(s):  
Faten AbdelHafez Ahmed ◽  
Christian Klausen ◽  
Hua Zhu ◽  
Peter C K Leung

Abstract Placental insufficiency disorders are major obstetric complications that share a common phenomenon of poor placental trophoblast cell invasion and remodeling of uterine tissues. Myostatin is a transforming growth factor (TGF)-β superfamily member well-known for its important role in muscle growth control. Myostatin is also produced in the placenta and has been shown to regulate some trophoblast functions. However, its roles in placental development are still poorly understood. In this study, we tested the hypothesis that myostatin increases trophoblast cell invasion by upregulating N-cadherin via SMAD2/3-SMAD4 signaling. Primary and immortalized (HTR8/SVneo) trophoblast cells were used as study models. Matrigel-coated transwell invasion assays were used to study the effects of recombinant human myostatin on trophoblast cell invasion. RT-qPCR and Western blot were used to measure myostatin effects on N-cadherin mRNA and protein levels, respectively. Small inhibitor molecules as well as siRNA-mediated knockdown were used to block myostatin receptor and downstream signaling, respectively. Data were analyzed either by unpaired Student T test or one-way ANOVA followed by Newman Keuls test for multiple group comparisons. Myostatin significantly increased primary and HTR8/SVneo trophoblast cell invasion. Moreover, myostatin upregulated N-cadherin mRNA and protein levels in a time dependent manner in both study models. These effects were blocked by inhibition of TGF-β type I receptors as well as siRNA-mediated knockdown of SMAD2/3 combined or common SMAD4. Importantly, myostatin-induced trophoblast cell invasion was abolished by knockdown of N-cadherin, SMAD2/3 or SMAD4. Myostatin may increase human trophoblast cell invasion by upregulating N-cadherin via SMAD2/3-SMAD4 signaling.


2019 ◽  
Vol 31 (6) ◽  
pp. 1057 ◽  
Author(s):  
Zhihui Dai ◽  
Fei Sheng ◽  
Ningxia Sun ◽  
Yixuan Ji ◽  
Qiuying Liao ◽  
...  

Normal implantation and placental development depend on the appropriate differentiation and invasion of trophoblast cells. Inadequate trophoblast cell invasion results in pregnancy-related disorders, which endanger both mother and fetus; however, the mechanism of early placental development has not been fully explained. In this study we conducted gene expression profile analysis using mouse placental tissues at different developmental stages (embryonic day (E)7.5, E14.5 and E19.5) using series tests of cluster (STC) and Kyoto Encyclopaedia of Genes and Genomes (KEGG) pathway analyses. Focal adhesion kinase (FAK) signalling pathway-related gene expression levels were verified using quantitative reverse transcription polymerase chain reaction and western blot. The results showed that caveolin-1 (Cav1) was downregulated in the placenta of unexplained spontaneous abortion subjects compared with that of induced abortion. Furthermore, by modulating CAV1 expression levels, CAV1 was shown to promote human trophoblast cell proliferation, migration and invasion by activating the FAK signalling pathway. These results indicate that CAV1 and the FAK signalling pathway are crucial for early placental development, which sheds new light on our understanding of the mechanisms of human trophoblast cell invasion and early development of the placenta.


Placenta ◽  
2013 ◽  
Vol 34 (9) ◽  
pp. A49
Author(s):  
Yan Li ◽  
Jung-Chien Cheng ◽  
Christian Klausen ◽  
Peter Leung

2009 ◽  
Vol 57 (6) ◽  
pp. 605-612 ◽  
Author(s):  
Qing Yang ◽  
Sheng-Ping Chen ◽  
Xiao-Ping Zhang ◽  
Hongmei Wang ◽  
Cheng Zhu ◽  
...  

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Jung-Chien Cheng ◽  
Lanlan Fang ◽  
Yuxi Li ◽  
Avinash Thakur ◽  
Pamela A. Hoodless ◽  
...  

AbstractInsufficient invasion of trophoblast cells into the uterine decidua is associated with preeclampsia (PE). G protein-coupled estrogen receptor (GPER) is a membrane estrogen receptor involved in non-genomic estrogen signaling. GPER is expressed in human trophoblast cells and downregulated GPER levels are noted in PE. However, to date, the role of GPER in trophoblast cells remains largely unknown. Here, we applied RNA sequencing (RNA-seq) to HTR-8/SVneo human trophoblast cells in response to G1, an agonist of GPER, and identified angiopoietin-like 4 (ANGPTL4) as a target gene of GPER. Treatment of trophoblast cells with G1 or 17β-estradiol (E2) activated Yes-associated protein (YAP), the major downstream effector of the Hippo pathway, via GPER but in a mammalian STE20-like protein kinase 1 (MST1)-independent manner. Using pharmacological inhibitors as well as loss- and gain-of-function approaches, our results revealed that YAP activation was required for GPER-stimulated ANGPTL4 expression. Transwell invasion assays demonstrated that activation of GPER-induced ANGPTL4 promoted cell invasion. In addition, the expression levels of GPER, YAP, and ANGPTL4 were downregulated in the placenta of patients with PE. Our findings reveal a mechanism by which GPER exerts its stimulatory effect on human trophoblast cell invasion by upregulating YAP-mediated ANGPTL4 expression.


Reproduction ◽  
2021 ◽  
Author(s):  
Lanlan Fang ◽  
Zhen Wang ◽  
Ze Wu ◽  
Yang Yan ◽  
Yibo Gao ◽  
...  

Matrix metalloproteinases (MMPs) play a pivotal role in the regulation of cell invasion. Placental trophoblast cell invasion is a precisely regulated event. Dysregulation of MMPs has been linked to various placental diseases. Growth differentiation factor-8 (GDF-8), also known as myostatin, is a member of the transforming growth factor-beta (TGF-β) superfamily. GDF-8 and its putative receptors are expressed in human extravillous cytotrophoblast cells (EVTs). Although the pro-invasive effect of GDF-8 in human EVT cells has been recently reported, the underlying molecular mechanism remains largely unknown. In this study, we investigate the effects of GDF-8 on the expression of the two most important MMPs, MMP2 and MMP9, in the HTR-8/SVneo human EVT cell line. Our results show that GDF-8 significantly upregulates the expression of MMP2. The expression of MMP9 is not affected by GDF-8. Using a siRNA-mediated knockdown approach, we reveal that the stimulatory effect of GDF-8 on MMP2 expression is mediated by the ALK5-SMAD2/3 signaling pathway. Additionally, the knockdown of MMP2 attenuates the GDF-8-induced cell invasiveness. These findings deepen our understanding of the biological roles of GDF-8 in the regulation of human trophoblast cell invasion.


Sign in / Sign up

Export Citation Format

Share Document