scholarly journals Galectin-9 Promotes Human Trophoblast Cell Invasion through Matrix Metalloproteinase-2 and p38 Signaling Pathway

2018 ◽  
Vol 2 (1) ◽  
pp. 1 ◽  
Author(s):  
Song-Cun Wang ◽  
Mei-Rong Du ◽  
Feng-Run Sun ◽  
Chun-Qing Chen ◽  
Min Yu ◽  
...  
2005 ◽  
Vol 76 (3) ◽  
pp. 239-248 ◽  
Author(s):  
Rosalyn Ram ◽  
Gustavo Lorente ◽  
Karoly Nikolich ◽  
Roman Urfer ◽  
Erik Foehr ◽  
...  

Author(s):  
Faten AbdelHafez Ahmed ◽  
Christian Klausen ◽  
Hua Zhu ◽  
Peter C K Leung

Abstract Placental insufficiency disorders are major obstetric complications that share a common phenomenon of poor placental trophoblast cell invasion and remodeling of uterine tissues. Myostatin is a transforming growth factor (TGF)-β superfamily member well-known for its important role in muscle growth control. Myostatin is also produced in the placenta and has been shown to regulate some trophoblast functions. However, its roles in placental development are still poorly understood. In this study, we tested the hypothesis that myostatin increases trophoblast cell invasion by upregulating N-cadherin via SMAD2/3-SMAD4 signaling. Primary and immortalized (HTR8/SVneo) trophoblast cells were used as study models. Matrigel-coated transwell invasion assays were used to study the effects of recombinant human myostatin on trophoblast cell invasion. RT-qPCR and Western blot were used to measure myostatin effects on N-cadherin mRNA and protein levels, respectively. Small inhibitor molecules as well as siRNA-mediated knockdown were used to block myostatin receptor and downstream signaling, respectively. Data were analyzed either by unpaired Student T test or one-way ANOVA followed by Newman Keuls test for multiple group comparisons. Myostatin significantly increased primary and HTR8/SVneo trophoblast cell invasion. Moreover, myostatin upregulated N-cadherin mRNA and protein levels in a time dependent manner in both study models. These effects were blocked by inhibition of TGF-β type I receptors as well as siRNA-mediated knockdown of SMAD2/3 combined or common SMAD4. Importantly, myostatin-induced trophoblast cell invasion was abolished by knockdown of N-cadherin, SMAD2/3 or SMAD4. Myostatin may increase human trophoblast cell invasion by upregulating N-cadherin via SMAD2/3-SMAD4 signaling.


2019 ◽  
Vol 31 (6) ◽  
pp. 1057 ◽  
Author(s):  
Zhihui Dai ◽  
Fei Sheng ◽  
Ningxia Sun ◽  
Yixuan Ji ◽  
Qiuying Liao ◽  
...  

Normal implantation and placental development depend on the appropriate differentiation and invasion of trophoblast cells. Inadequate trophoblast cell invasion results in pregnancy-related disorders, which endanger both mother and fetus; however, the mechanism of early placental development has not been fully explained. In this study we conducted gene expression profile analysis using mouse placental tissues at different developmental stages (embryonic day (E)7.5, E14.5 and E19.5) using series tests of cluster (STC) and Kyoto Encyclopaedia of Genes and Genomes (KEGG) pathway analyses. Focal adhesion kinase (FAK) signalling pathway-related gene expression levels were verified using quantitative reverse transcription polymerase chain reaction and western blot. The results showed that caveolin-1 (Cav1) was downregulated in the placenta of unexplained spontaneous abortion subjects compared with that of induced abortion. Furthermore, by modulating CAV1 expression levels, CAV1 was shown to promote human trophoblast cell proliferation, migration and invasion by activating the FAK signalling pathway. These results indicate that CAV1 and the FAK signalling pathway are crucial for early placental development, which sheds new light on our understanding of the mechanisms of human trophoblast cell invasion and early development of the placenta.


Molecules ◽  
2020 ◽  
Vol 25 (23) ◽  
pp. 5760
Author(s):  
Jianmei Zhang ◽  
Mi-Yeon Kim ◽  
Jae Youl Cho

Euodia pasteuriana A. Chev. ex Guillaumin, also known as Melicope accedens (Blume) T.G. Hartley, is a herbal medicinal plant native to Vietnam. Although Euodia pasteuriana is used as a traditional medicine to treat a variety of inflammatory diseases, the pharmacological mechanisms related to this plant are unclear. This study aimed to investigate the anti-inflammatory effects of a methanol extract of Euodia pasteuriana leaves (Ep-ME) on the production of inflammatory mediators, the mRNA expression of proinflammatory genes, and inflammatory signaling activities in macrophage cell lines. The results showed that Ep-ME strongly suppressed the release of nitric oxide (NO) in RAW264.7 cells induced with lipopolysaccharide (LPS), pam3CysSerLys4 (Pam3CSK), and polyinosinic-polycytidylic acid (poly I:C) without cytotoxicity. A reverse transcription-polymerase chain reaction further confirmed that Ep-ME suppressed the expression of interleukin 6 (IL-6), matrix metalloproteinase-1 (MMP1), matrix metalloproteinase-2 (MMP2), matrix metalloproteinase-3 (MMP3), tumor necrosis factor-α (TNF-α), and matrix metalloproteinase-9 (MMP9) at the transcriptional level and reduced the luciferase activities of activator protein 1 (AP-1) reporter promoters. In addition, immunoblotting analyses of the whole lysate and nuclear fraction, as well as overexpression assays demonstrated that Ep-ME decreased the translocation of c-Jun and suppressed the activation of transforming growth factor beta-activated kinase 1 (TAK1) in the AP-1 signaling pathways. These results imply that Ep-ME could be developed as an anti-inflammatory agent that targets TAK1 in the AP-1 signaling pathway.


Sign in / Sign up

Export Citation Format

Share Document