scholarly journals Expression Analysis of Transcription Factors Involved in Chloroplast Differentiation

2015 ◽  
Vol 14 ◽  
pp. 146-151
Author(s):  
Dwi Andi Listiawan ◽  
Ryo Tanoue ◽  
Koichi Kobayashi ◽  
Tatsuru Masuda
2009 ◽  
Vol 35 (6) ◽  
pp. 1030-1037 ◽  
Author(s):  
Ting-Chen MA ◽  
Rong-Jun CHEN ◽  
Rong-Rong YU ◽  
Han-Lai ZENG ◽  
Duan-Pin ZHANG

2020 ◽  
Vol 8 (7) ◽  
pp. 1045
Author(s):  
Yuping Xu ◽  
Yongchun Wang ◽  
Huizhang Zhao ◽  
Mingde Wu ◽  
Jing Zhang ◽  
...  

The basic leucine zipper (bZIP) proteins family is one of the largest and most diverse transcription factors, widely distributed in eukaryotes. However, no information is available regarding the bZIP gene family in Coniothyrium minitans, an important biocontrol agent of the plant pathogen Sclerotinia sclerotiorum. In this study, we identified 34 bZIP genes from the C. minitans genome, which were classified into 8 groups based on their phylogenetic relationships. Intron analysis showed that 28 CmbZIP genes harbored a variable number of introns, and 15 of them shared a feature that intron inserted into the bZIP domain. The intron position in bZIP domain was highly conserved, which was related to recognize the arginine (R) and could be treated as a genomic imprinting. Expression analysis of the CmbZIP genes in response to abiotic stresses indicated that they might play distinct roles in abiotic stress responses. Results showed that 22 CmbZIP genes were upregulated during the later stage of conidial development. Furthermore, transcriptome analysis indicated that CmbZIP genes are involved in different stages of mycoparasitism. Among deletion mutants of four CmbZIPs (CmbZIP07, -09, -13, and -16), only ΔCmbZIP16 mutants significantly reduced its tolerance to the oxidative stress. The other mutants exhibited no significant effects on colony morphology, mycelial growth, conidiation, and mycoparasitism. Taken together, our results suggested that CmbZIP genes play important roles in the abiotic stress responses, conidial development, and mycoparasitism. These results provide comprehensive information of the CmbZIP gene family and lay the foundation for further research on the bZIP gene family regarding their biological functions and evolutionary history.


2011 ◽  
Vol 5 (S7) ◽  
Author(s):  
Gabriel d'Almeida ◽  
Michèle Breton ◽  
Sandro Camargo ◽  
Jeverson Frazzon ◽  
Giancarlo Pasquali

2016 ◽  
Vol 102 ◽  
pp. 10-16 ◽  
Author(s):  
Aiping Song ◽  
Tianwei Gao ◽  
Dan Wu ◽  
Jingjing Xin ◽  
Sumei Chen ◽  
...  

PLoS ONE ◽  
2018 ◽  
Vol 13 (6) ◽  
pp. e0199187 ◽  
Author(s):  
Suzam L. S. Pereira ◽  
Cristina P. S. Martins ◽  
Aurizangela O. Sousa ◽  
Luciana R. Camillo ◽  
Caroline P. Araújo ◽  
...  

2019 ◽  
Vol 20 (12) ◽  
pp. 3044 ◽  
Author(s):  
Yingqi Hong ◽  
Naveed Ahmad ◽  
Yuanyuan Tian ◽  
Jianyu Liu ◽  
Liyan Wang ◽  
...  

The basic helix–loop–helix (bHLH) family is the second largest superfamily of transcription factors that belongs to all three eukaryotic kingdoms. The key function of this superfamily is the regulation of growth and developmental mechanisms in plants. However, the bHLH gene family in Carthamus tinctorius has not yet been studied. Here, we identified 41 bHLH genes in Carthamus tinctorius that were classified into 23 subgroups. Further, we conducted a phylogenetic analysis and identified 10 conserved protein motifs found in the safflower bHLH family. We comprehensively analyzed a group of bHLH genes that could be associated with flavonoid biosynthesis in safflower by gene expression analysis, gene ontology annotation, protein interaction network prediction, subcellular localization of the candidate CtbHLH40 gene, and real-time quantitative expression analysis. This study provides genome-wide identification of the genes related to biochemical and physiological processes in safflower.


2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Feng Chen ◽  
Yingzeng Yang ◽  
Xiaofeng Luo ◽  
Wenguan Zhou ◽  
Yujia Dai ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document