scholarly journals Rapid Tooling Injection Molded Prototypes: A Case Study in Artificial Photosynthesis Technology

Procedia CIRP ◽  
2014 ◽  
Vol 14 ◽  
pp. 251-256 ◽  
Author(s):  
Joanna Noble ◽  
Karl Walczak ◽  
David Dornfeld
2020 ◽  
Vol 26 (4) ◽  
pp. 669-687 ◽  
Author(s):  
Sathies T. ◽  
Senthil P. ◽  
Anoop M.S.

Purpose Fabrication of customized products in low volume through conventional manufacturing incurs a high cost, longer processing time and huge material waste. Hence, the concept of additive manufacturing (AM) comes into existence and fused deposition modelling (FDM), is at the forefront of researches related to polymer-based additive manufacturing. The purpose of this paper is to summarize the research works carried on the applications of FDM. Design/methodology/approach In the present paper, an extensive review has been performed related to major application areas (such as a sensor, shielding, scaffolding, drug delivery devices, microfluidic devices, rapid tooling, four-dimensional printing, automotive and aerospace, prosthetics and orthosis, fashion and architecture) where FDM has been tested. Finally, a roadmap for future research work in the FDM application has been discussed. As an example for future research scope, a case study on the usage of FDM printed ABS-carbon black composite for solvent sensing is demonstrated. Findings The printability of composite filament through FDM enhanced its application range. Sensors developed using FDM incurs a low cost and produces a result comparable to those conventional techniques. EMI shielding manufactured by FDM is light and non-oxidative. Biodegradable and biocompatible scaffolds of complex shapes are possible to manufacture by FDM. Further, FDM enables the fabrication of on-demand and customized prosthetics and orthosis. Tooling time and cost involved in the manufacturing of low volume customized products are reduced by FDM based rapid tooling technique. Results of the solvent sensing case study indicate that three-dimensional printed conductive polymer composites can sense different solvents. The sensors with a lower thickness (0.6 mm) exhibit better sensitivity. Originality/value This paper outlines the capabilities of FDM and provides information to the user about the different applications possible with FDM.


2002 ◽  
Vol 2 (2) ◽  
pp. 86-97 ◽  
Author(s):  
Yong Chen ◽  
David W. Rosen

Particularly for rapid tooling applications, delivering prototype parts with turn-around times of less than two weeks requires fast, proven mold design methods. We present a region-based approach to automated mold design that is suitable for simple two-piece molds (consisting of core and cavity), as well as molds with many additional moving sections. In our region-based approach, part faces are partitioned into regions, each of which can be formed by a single mold piece. The basic elements of our approach are concave regions (generalized pockets) and convex faces since these elements are central to the identification of regions. This paper focuses on the initial steps of automated mold design, including a problem formulation, methods for identifying the basic elements from part faces, and combining them into regions. By seeking to minimize the number of mold pieces, different partitions of faces into regions are explored until the smallest number of regions is found. During this process, a linear programming problem is adopted for finding a satisfactory parting direction of a region. Algorithms are presented for the region generating and combining process. Our approach is illustrated with several examples of industrial injection molded parts.


Author(s):  
Andrzej Markowski ◽  
Harry Petersen

Abstract Rapid Prototyping and Rapid Tooling (RP/RT) can reduce time-to-market by creating physical parts and tooling from computer files. These can be used for verification of designs, tests and marketing, and also as final products or tools for short run production. Education is critical, because effective use of RP/RT technology requires preparation and training of all parties, including designers, engineers, manufacturing technologists, and business people. This paper reviews advances in RP/RT along with research, education, and a case study conducted at Minnesota State University, Mankato.


Sign in / Sign up

Export Citation Format

Share Document