scholarly journals Prediction of Surface Residual Stress on Titanium Alloy generated by Belt Grinding using Molecular System Dynamics

Procedia CIRP ◽  
2020 ◽  
Vol 87 ◽  
pp. 480-484
Author(s):  
Huang Yun ◽  
Liu Shuai ◽  
Xiao Guijian ◽  
He Yi ◽  
Wang Wenxi ◽  
...  
2013 ◽  
Vol 716 ◽  
pp. 185-190
Author(s):  
He Ping Wei ◽  
Yun Huang ◽  
Zhao Yang Liu

This paper aimed at that titanium alloy grinding is easy to appear surface burn, crack, then carry out the titanium alloy TC4 abrasive belt grinding experiment, focus on the effect of grinding parameters on the titanium alloy TC4 surface integrity (surface roughness, microstructure and surface residual stress) . The results of the study show that the use of zircon corundum belt and cutting speed velocity range from 18 to 26 meter per second, the surface integrity of titanium alloy TC4 is better.


Author(s):  
Guijian Xiao ◽  
Kangkang Song ◽  
Huawei Zhou ◽  
Yi He ◽  
Wentao Dai

The titanium alloy blade is a key part of an aero-engine, but its high surface efficiency and precision machining present technical problems. Belt grinding can effectively prolong the fatigue life of the blade and enhance the service performance of the aero-engine. However, the residual stress of the workpiece after belt grinding directly affects its service performance and life. The traditional single particle abrasive model simulation is limited in exploring the influence of grinding process parameters on surface residual stress. In this study, an ABAQUS simulation model of multi-particle belt grinding is established for titanium alloy material, a finite element (FE) simulation is conducted with different technological parameters, and the results are analysed. The critical belt grinding experiment is conducted on thin-walled titanium alloy parts, and the distribution characteristics of surface residual stress after grinding are studied to understand the influence of grinding parameters on the formation of surface residual stress. Comparing the results of the FE simulation and the grinding experiment, the common law of stress change and the prediction model are obtained. The results show that the multi-particle belt grinding simulation is consistent with the belt grinding experiment in terms of the influence of grinding parameters on residual stress. The simulation can serve as a guide in actual belt grinding to some extent. Directions for improving the multi-particle abrasive simulation model are discussed.


Materials ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 2218 ◽  
Author(s):  
Yi He ◽  
Guijian Xiao ◽  
Wei Li ◽  
Yun Huang

Titanium alloy materials are widely used in the design of key parts, such as aeroengine blades and integral blades. The surface residual stress has a great influence on the fatigue life of the parts mentioned above. Presently, abrasive belt grinding can form residual stress on the surface. However, the formation mechanism has not yet been revealed, providing the impetus for the present study. First of all, the surface residual stress is characterized based on Bragg’s law. The influence of contact force, reciprocating frequency, and feed speed on the residual stress of a titanium alloy abrasive belt grinding is obtained using an experimental method. The residual stress model is simulated by the tensile force on the surface of the model, and the fatigue life of the bar under a sinusoidal tensile load is analyzed by simulating the fatigue test of the titanium alloy bar. Finally, fatigue testing and fracture analysis are carried out. The experimental results show that with the increase of the grinding contact force, increase of the reciprocating frequency, and decrease of the feed speed, the residual compressive stress on the surface of the parts increases and the fatigue life is higher at the same working stress level. It also shows that the residual compressive stress produced by abrasive belt grinding is in the range of 120–300 MPa. The fatigue simulation curve’s inflection point appears at the level of 550 MPa. The error between the simulation data and the experimental data is less than 10%, which shows the accuracy of the simulation experiment. The fracture morphology at room temperature is a ductile fracture with fine equiaxed dimples.


1960 ◽  
Vol 82 (1) ◽  
pp. 76-78 ◽  
Author(s):  
E. C. Reed ◽  
J. A. Viens

Investigation of the effect of surface residual stress on the endurance limit of 6Al 4V titanium alloy shows that this effect is equal within experimental error to the residual stress divided by a constant. Results can be expressed by a simple equation. A value for the constant has been derived.


2019 ◽  
Vol 943 ◽  
pp. 20-25
Author(s):  
Ran Zhu ◽  
Yong Kang Zhang ◽  
Gui Fang Sun ◽  
Pu Li

The confined laser shock peening (LSP) is an innovative surface treatment technique designed to improve the fatigue performance of materials by imparting compressive residual stresses into materials. A 3D finite element model was developed to predict the surface residual stress and plastically affected depth of the TC11 titanium alloy after LSP. The modeling procedure consists of two successive explicit analysis steps. The performance of finite element model was verified by comparing simulated results with the experimental data. With the validated finite element model, the influence of the process parameters (LSP path, thickness of the sample, number of impacts) was investigated on the surface residual stress and plastically affected depth of the TC11 titanium alloy after LSP. Some simulated results can be used to mentor the optimization of the process parameters of LSP.


2019 ◽  
Vol 3 (4) ◽  
pp. 94
Author(s):  
Shucai Yang ◽  
Song Yu ◽  
Xianli Liu ◽  
Shuai Su ◽  
Yongzhi Zhou

When machining titanium alloy parts, aside from accuracy, the other key concern when evaluating their quality is the integrity of the machined surface. Residual stress can have a significant impact upon this. A certain amount of residual stress can help to strengthen the workpiece, but excessive residual stress can lead to its deformation. In this paper, we report on an experimental study of the surface integrity of titanium alloy after milling with a microtextured ball-end cutter. Tests were conducted to assess the residual stresses on the surface of titanium alloy workpieces according to the direction of feed and milling. The impact of different micro-texture parameters was also assessed; namely, the diameter, depth, spacing and distance from the cutting edge of the individual pits. Range analysis, which is an orthogonal test, was used to analyze the results of the experiments and a prediction model of surface residual stress was established for the milling of titanium alloy with micro-textured ball-end cutters. This model can provide theoretical support for the optimization of the parameters involved in future milling processes.


Sign in / Sign up

Export Citation Format

Share Document