scholarly journals Analysis on the aerodynamic performance of vertical axis wind turbine subjected to the change of wind velocity

2012 ◽  
Vol 31 ◽  
pp. 213-219 ◽  
Author(s):  
Huimin Wang ◽  
Jianliang Wang ◽  
Ji Yao ◽  
Weibin Yuan ◽  
Liang Cao
2018 ◽  
Vol 53 ◽  
pp. 02004
Author(s):  
Qiuyun Mo ◽  
Jiabei Yin ◽  
Lin Chen ◽  
Weihao Liu ◽  
Li Jiang ◽  
...  

In this paper, a 2D off-grid small compact model of vertical axis wind turbine was established. The sliding grid technology, the RNG turbulence model and the Coupld algorithm was applied to simulate the unsteady value of the model's aerodynamic performance. Through the analysis on the flow field at difference moments, the rules about velocity fields, vortices distributions and the wind turbine's total torque were obtained. The results show that: the speed around wind turbine blades have obvious gradient, and the velocity distribution at different times show large differences in the computional domain. In the rotating domain vorticity is large. With away from the rotation domain, vorticity reduced quickly. In the process of rotating for vertical axis wind turbine, the wind turbine's total torque showed alternating positive and negative changes.


2012 ◽  
Vol 215-216 ◽  
pp. 1323-1326
Author(s):  
Ming Wei Xu ◽  
Jian Jun Qu ◽  
Han Zhang

A small vertical axis wind turbine with wind speed self-adapting was designed. The diameter and height of the turbine were both 0.7m. It featured that the blades were composed of movable and fixed blades, and the opening and closing of the movable blades realized the wind speed self-adapting. Aerodynamic performance of this new kind turbine was tested in a simple wind tunnel. Then the self-starting and power coefficient of the turbine were studied. The turbine with load could reliably self-start and operate stably even when the wind velocity was only 3.6 m/s. When the wind velocity was 8 m/s and the load torque was 0.1Nm, the movable blades no longer opened and the wind turbine realized the conversion from drag mode to lift mode. With the increase of wind speed, the maximum power coefficient of the turbine also improves gradually. Under 8 m/s wind speed, the maximum power coefficient of the turbine reaches to 12.26%. The experimental results showed that the new turbine not only improved the self-starting ability of the lift-style turbine, but also had a higher power coefficient in low tip speed ratio.


Author(s):  
Ebert Vlasveld ◽  
Fons Huijs ◽  
Feike Savenije ◽  
Benoît Paillard

A vertical axis wind turbine (VAWT) typically has a low position of the center of gravity and a large allowable tilt angle, which could allow for a relatively small floating support structure. Normally however, the drawback of large loads on the VAWT rotor during parked survival conditions limits the extent to which the floater size can be reduced. If active blade pitch control is applied to the VAWT, this drawback can be mitigated and the benefits can be fully utilized. The coupled dynamics of a 6 MW VAWT with active blade pitch control supported by a GustoMSC Tri-Floater semi-submersible floater have been simulated using coupled aero-hydro-servo-elastic software. The applied blade pitch control during power production results in a steady-state thrust curve which is more comparable to a HAWT, with the maximum thrust occurring at rated wind velocity. During power production, floater motions occur predominantly at low frequencies. These low frequency motions are caused by variations in the wind velocity and consequently the rotor thrust and torque. For the parked survival condition, it is illustrated that active blade pitch control can be used to effectively reduce dynamic load variations on the rotor and minimize floater motions and mooring line tensions.


Author(s):  
Brett C. Krippene ◽  
Ira Sorensen

A conceptual design is presented of a roof-top type, MULTI-PHASED VERTICAL AXIS WIND TURBINE SYSTEM with an ADJUSTABLE INLET AIR SCOOP and EXIT DRAG CURTAIN at a 100 Watt to 50 kWe commercial scale. The MULTI-PHASED VERTICAL AXIS WIND TURBINE (MVAWT) SYSTEM is cost effective in an environmentally friendly manner. It is especially useful in areas where it can benefit from the wind velocity increasing and streamlining effects that may occur around small hills, roof tops and tall buildings. The MVAWT system concentrates, collects and utilizes the available energy in the wind by way of a naturally yawed, downwind seeking, vertical axis orientated flow tube and integrated air turbine assembly with adjustable inlet air scoop and outlet drag sections mounted on the flow tube. The MVAWT system’s air turbine is a combination radial or mixed out-flow and reaction cross-flow type centrifugal fan design as mounted on the discharge end of the flow tube. This air turbine, being more of a radial instead of an axial flow or propeller type design, can potentially exceed the Betz limit of 59.26% energy recovery or effectiveness from the maximum energy available from the wind flowing through the inlet flow tube. A low pressure drop screen can be provided at the inlet and outlet to protect flying birds and mammals from being drawn into the integrated flow tube and air turbine assembly. Additionally, access to the rotating components for inspection and maintenance purposes is much safer, easier and less costly than with conventional propeller type wind turbine systems mounted on tall towers. No multiple staged wind turbine system as described herein has as yet been researched as to its technical feasibility and developed to the point of a prototype demonstration at a commercial size. Such parameters as overall performance, energy conversion efficiency, costs (installed, operating and maintenance), system reliability, public acceptance and environmental impacts have not yet been truly assessed. A Phase I - technical feasibility assessment and Phase II - prototype demonstration program for a nominal 10 kWe sized Multi-Phased Vertical Axis Wind Turbine system with an average power output in a 16 mph wind of as much as 2 kWe (kW-hr / hr) and as much as 10 kWe (kW-hr / hr) at a 28 mph wind velocity is suggested to provide this essential information to both the authors and the public at large.


2020 ◽  
Vol 23 (4) ◽  
pp. 771-780
Author(s):  
Anh Ngoc VU ◽  
Ngoc Son Pham

This study describes an effectively analytic methodology to investigate the aerodynamic performance of H vertical axis wind turbine (H-VAWT). An in-house code based on double multiple stream tube theory (DMST) coupled with dynamic stall and wake correction is implemented to estimate the power coefficient. Design optimization of airfoil shape is conducted to study the influences of the dynamic stall and turbulent wakes. Airfoil shape is universally investigated by using the Class/Shape function transformation method. The airfoil study shows that the upper curve tends to be less convex than the lower curve in order to extract more energy of the wind upstream and generate less drag of the blade downstream. The optimal results show that the power coefficient increases by 6.5% with the new airfoil shape.


2014 ◽  
Vol 529 ◽  
pp. 296-302 ◽  
Author(s):  
Wei Zuo ◽  
Shun Kang

The aerodynamic performance and the bypass flow field of a vertical axis wind turbine under self-starting are investigated using CFD simulations in this paper. The influence of pitch angle variations on the performance of the wind turbine during self-starting is presented. A two-dimensional model of the wind turbine with three blades is employed. A commercial software FlowVision is employed in this paper, which uses dynamic Cartesian grid. The SST turbulence model is used for turbulence modeling, which assumes the flow full turbulent. Based on the comparison between the computed time-dependent variations of the rotation speed with the experimental data, the time-dependent variations of the torque are presented. The characteristics of self-starting of the wind turbine are analyzed with the pitch angle of 0o、-2oand 2o. The influence of pitch angle variations on two-dimensional unsteady viscous flow field through velocity contours is discussed in detail.


Sign in / Sign up

Export Citation Format

Share Document