scholarly journals Extensional Viscosity and Stability of Oil-in-water Emulsions with Addition Poly(ethylene oxide)

2012 ◽  
Vol 42 ◽  
pp. 733-741 ◽  
Author(s):  
S.Różańska ◽  
L. Broniarz-Press ◽  
J. Różański ◽  
P. Mitkowski ◽  
M. Ochowiak ◽  
...  
Author(s):  
C. E. Cluthe ◽  
G. G. Cocks

Aqueous solutions of a 1 weight-per cent poly (ethylene oxide) (PEO) were degassed under vacuum, transferred to a parallel plate viscometer under a nitrogen gas blanket, and exposed to Co60 gamma radiation. The Co60 source was rated at 4000 curies, and the dose ratewas 3.8x105 rads/hr. The poly (ethylene oxide) employed in the irradiations had an initial viscosity average molecular weight of 2.1 x 106.The solutions were gelled by a free radical reaction with dosages ranging from 5x104 rads to 4.8x106 rads.


2020 ◽  
Vol 04 ◽  
Author(s):  
Lívia Gonçalves Ferreira Rodrigues ◽  
Juliana Falcão Alves de Carvalho ◽  
Cristal dos Santos Cerqueira Pinto ◽  
Elisabete Pereira Santos ◽  
Claudia Regina Elias Mansur

Background:: The use of polymers in hair care products is widespread, and silicones in particular are extensively used in cosmetic formulations. In addition, plant oils can also be used for hair treatment. Objective: In the present work, oil-in-water (O/W) nanoemulsions were prepared to repair chemical damage to human hair samples, to investigate the combined use of a silicone polyether copolymer (surfactant) that has a branch composed of poly(ethylene oxide) in its chains, and two types of plant oils: coconut and ojon oil. Materials and Methods:: Surfactant-oil-water formulations were obtained by ultrasonic processing. The nanoemulsions were then applied to human hair strands previously damaged with sodium hydroxide, to compare the treated strands with untreated ones. The efficacy of the formulations was investigated by scanning electron microscopy, thermogravimetric analysis and mechanical tests. Results and Discussion:: Stables nanoemulsions were obtained with average size of the dispersed droplets up to 400 nm. The micrographs suggest that the action mechanism of the nanoemulsions depends not only on the type of plant oil used and size of the droplets dispersed in the system, but also on the type of hair that receives the treatment. The thermal analysis showed that the use of nanoemulsion changed the temperature of keratin interconversion to higher values, which can make hair fibers more resistant to heat. Hair resistance was improved when comparing virgin samples to the damaged ones. Conclusion:: The nanoemulsions were efficient in the treatment of the hair samples, which showed a significant improvement of their mechanical properties.


2003 ◽  
Vol 68 (10) ◽  
pp. 2019-2031 ◽  
Author(s):  
Markéta Zukalová ◽  
Jiří Rathouský ◽  
Arnošt Zukal

A new procedure has been developed, which is based on homogeneous precipitation of organized mesoporous silica from an aqueous solution of sodium metasilicate and a nonionic poly(ethylene oxide) surfactant serving as a structure-directing agent. The decrease in pH, which induces the polycondensation of silica, is achieved by hydrolysis of ethyl acetate. Owing to the complexation of Na+ cations by poly(ethylene oxide) segments, assembling of the mesostructure appears to occur under electrostatic control by the S0Na+I- pathway, where S0 and I- are surfactant and inorganic species, respectively. As the complexation of Na+ cations causes extended conformation of poly(ethylene oxide) segments, the pore size and pore volume of organized mesoporous silica increase in comparison with materials prepared under neutral or acidic conditions. The assembling of particles can be fully separated from their solidification, which results in the formation of highly regular spherical particles of mesoporous silica.


Sign in / Sign up

Export Citation Format

Share Document