scholarly journals Wafer Level Fabrication of Vibrational Energy Harvesters using Bulk PZT Sheets

2012 ◽  
Vol 47 ◽  
pp. 1041-1044 ◽  
Author(s):  
P. Janphuang ◽  
R. Lockhart ◽  
D. Briand ◽  
N.F. de Rooij
Micromachines ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 74
Author(s):  
Nianying Wang ◽  
Ruofeng Han ◽  
Changnan Chen ◽  
Jiebin Gu ◽  
Xinxin Li

A silicon-chip based double-deck three-dimensional (3D) solenoidal electromagnetic (EM) kinetic energy harvester is developed to convert low-frequency (<100 Hz) vibrational energy into electricity with high efficiency. With wafer-level micro electro mechanical systems (MEMS) fabrication to form a metal casting mold and the following casting technique to rapidly (within minutes) fill molten ZnAl alloy into the pre-micromachined silicon mold, the 300-turn solenoid coils (150 turns for either inner solenoid or outer solenoid) are fabricated in silicon wafers for saw dicing into chips. A cylindrical permanent magnet is inserted into a pre-etched channel for sliding upon external vibration, which is surrounded by the solenoids. The size of the harvester chip is as small as 10.58 mm × 2.06 mm × 2.55 mm. The internal resistance of the solenoids is about 17.9 Ω. The maximum peak-to-peak voltage and average power output are measured as 120.4 mV and 43.7 μW. The EM energy harvester shows great improvement in power density, which is 786 μW/cm3 and the normalized power density is 98.3 μW/cm3/g. The EM energy harvester is verified by experiment to be able to generate electricity through various human body movements of walking, running and jumping. The wafer-level fabricated chip-style solenoidal EM harvesters are advantageous in uniform performance, small size and volume applications.


2019 ◽  
Vol 96 (2) ◽  
pp. 1283-1301 ◽  
Author(s):  
Mickaël Lallart ◽  
Shengxi Zhou ◽  
Linjuan Yan ◽  
Zhichun Yang ◽  
Yu Chen

2020 ◽  
Vol 139 ◽  
pp. 106642
Author(s):  
Ulrike Nabholz ◽  
Lukas Lamprecht ◽  
Jan E. Mehner ◽  
André Zimmermann ◽  
Peter Degenfeld-Schonburg

Micromachines ◽  
2020 ◽  
Vol 11 (12) ◽  
pp. 1072
Author(s):  
Xi Zuo ◽  
Li Chen ◽  
Wenjun Pan ◽  
Xingchen Ma ◽  
Tongqing Yang ◽  
...  

Fluorinated polyethylene propylene (FEP) bipolar ferroelectret films with a specifically designed concentric tunnel structure were prepared by means of rigid-template based thermoplastic molding and contact polarization. The properties of the fabricated films, including the piezoelectric response, mechanical property, and thermal stability, were characterized, and two kinds of energy harvesters based on such ferroelectret films, working in 33- and 31-modes respectively, were investigated. The results show that the FEP films exhibit significant longitudinal and radial piezoelectric activities, as well as superior thermal stability. A quasi-static piezoelectric d33 coefficient of up to 5300 pC/N was achieved for the FEP films, and a radial piezoelectric sensitivity of 40,000 pC/N was obtained in a circular film sample with a diameter of 30 mm. Such films were thermally stable at 120 °C after a reduction of 35%. Two types of vibrational energy harvesters working in 33-mode and 31-mode were subsequently designed. The results show that a power output of up to 1 mW was achieved in an energy harvester working in 33-mode at a resonance frequency of 210 Hz, referring to a seismic mass of 33.4 g and an acceleration of 1 g (g is the gravity of the earth). For a device working in 31-mode, a power output of 15 μW was obtained at a relatively low resonance frequency of 26 Hz and a light seismic mass of 1.9 g. Therefore, such concentric tunnel FEP ferroelectric films provide flexible options for designing vibrational energy harvesters working either in 33-mode or 31-mode to adapt to application environments.


Author(s):  
M. Amin Karami ◽  
Daniel J. Inman

A nonlinear electromagnetic energy harvester is presented which can generate power from translational vibrations in two directions and rotational excitations. Commonly, vibrational energy harvesters are designed to generate power from only translational ambient oscillations in a specific direction. The assumption of uni-axial ambient vibrations is too idealistic. Not only the direction of the base excitations typically change in time but also the rotational excitations are as common in oscillating machinery as the translational vibrations. The proposed energy harvester is inspired by the Automatic Generating System in Seiko watches. The moving element is a magnetic pendulum. When the pendulum moves in response to the base excitations the magnetic tip passes over electromagnetic coils, positioned in a circular array in the stator. The relative motion of the tip magnet and the coil generates electricity. The paper presents an analytical representative model for the energy harvesting system. The dynamics and energy generation of the energy harvester in response to four different excitation configurations are studied. It is demonstrated that in response to large excitations the system commonly undergoes period doubling bifurcations and occasionally undergoes chaos. The study paves the way to optimal design of the hybrid rotary translational energy harvesters.


2021 ◽  
Vol 149 ◽  
pp. 107171
Author(s):  
Giacomo Clementi ◽  
Giulia Lombardi ◽  
Samuel Margueron ◽  
Miguel Angel Suarez ◽  
Eric Lebrasseur ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document