scholarly journals EFFECTS OF SAMPLING DEPTH FOR DISTRIBUTION OF COMPRESSIVE STRENGTH AND STRENGTH DEVELOPMENT OF CORE SPECIMENS IN FULL SCALE MODEL OF HIGH-STRENGTH CONCRETE COLUMN USING VARIOUS CEMENTS

Author(s):  
Shuzo OTSUKA ◽  
Yoshihisa NAKATA ◽  
Sosuke OKI
2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Keun-Hyeok Yang ◽  
Jae-Sung Mun ◽  
Myung-Sug Cho

This study examined the relative strength-maturity relationship of high-strength concrete (HSC) specifically developed for nuclear facility structures while considering the economic efficiency and durability of the concrete. Two types of mixture proportions with water-to-binder ratios of 0.4 and 0.28 were tested under different temperature histories including (1) isothermal curing conditions of 5°C, 20°C, and 40°C and (2) terraced temperature histories of 20°C for an initial age of individual 1, 3, or 7 days and a constant temperature of 5°C for the subsequent ages. On the basis of the test results, the traditional maturity function of an equivalent age was modified to consider the offset maturity and the insignificance of subsequent curing temperature after an age of 3 days on later strength of concrete. To determine the key parameters in the maturity function, the setting behavior, apparent activation energy, and rate constant of the prepared mixtures were also measured. This study reveals that the compressive strength development of HSC cured at the reference temperature for an early age of 3 days is insignificantly affected by the subsequent curing temperature histories. The proposed maturity approach with the modified equivalent age accurately predicts the strength development of HSC.


2014 ◽  
Vol 905 ◽  
pp. 195-198 ◽  
Author(s):  
Keun Hyeok Yang ◽  
Jae Sung Mun ◽  
Jae Eun Jeong

The present study examined the in-place strength of high-strength concrete based on the relative strength-maturity relationship. The measured strength gain of high-strength concrete was compared with the predictions obtained from the modified maturity function to consider the offset maturity and the insignificance of subsequent curing temperature after an age of 3 days on later strength of concrete. This study demonstrates that the compressive strength gain of concrete cured at the reference temperature (20°C) for an early age of 3 days is little affected by the subsequent curing temperature histories.


10.14311/228 ◽  
2001 ◽  
Vol 41 (3) ◽  
Author(s):  
M. Safan ◽  
A. Kohoutková

The influence of different drying conditions on the compressive strength and strength development rates of high strength concrete up to an age of 28 days was evaluated. Two HSC mixes with and without silica fume addition were used to cast cubes of 10 cm size. The cubes were stored in different drying conditions until the age of testing at 3, 7, 28 days.


2019 ◽  
Vol 972 ◽  
pp. 84-90
Author(s):  
Makhmud Kharun ◽  
Dmitry D. Koroteev

Self-compacting high-strength concrete (SCHSC) is an innovative concrete that has superior physical and mechanical properties, and does not require vibration for placing and compaction. Heat treatment (HT) of SCHSC can significantly accelerate the strength growth during cast-in-situ construction, and allows to reduce the turnover of formwork, the labor costs for construction, and the construction period. The issue of strength development of SCHSC during HT has been studied. SCHSC of R28 = 100 MPa was studied. Test specimens were cured with HT by infrared rays for 7, 9, 11, 13, 16 and 24 hours. Then warmed specimens were tested for compressive strength after 0.5, 4, 12 and 24 hours of cooling period. Study was carried out on the basis of analyzing, generalizing and evaluations of experimental data. A mathematical model is proposed for determining the compressive strength of SCHSC after one day of curing with HT.


2020 ◽  
Vol 10 (18) ◽  
pp. 6261
Author(s):  
Taegyu Lee ◽  
Jaehyun Lee ◽  
Hyeonggil Choi

This study proposes model formulae for predicting the strength of concrete by analyzing the relationships between the results of nondestructive testing (NDT) methods and the compressive strength of concrete specimens at the hardened stage. Further, NDT of concrete molds and mock-up specimens was conducted using NDT methods (rebound hammer, ultrasonic pulse velocity). The water/cement (W/C) ratios were set to 0.48, 0.41, and 0.33 to achieve concrete strengths within the compressive strength range of 24–60 MPa. The evaluation parameters included the fresh concrete properties, compressive strength (mold and core), temperature history, maturity, rebound value, and ultrasonic pulse velocity. Evaluation results indicated that the reliability of existing models, based on the rebound and ultrasonic pulse velocity, is significantly low on high-strength concrete of 40 MPa or higher, and cannot satisfy the ±20% error range. Consequently, this study proposes a regression equation of the concrete strength based on the experimental rebound and ultrasonic pulse velocity values in a 24–60 MPa range, which offers satisfactory reliability.


2012 ◽  
Vol 2 (3) ◽  
pp. 102-104 ◽  
Author(s):  
Suthar Sunil B ◽  
◽  
Dr. (Smt.) B. K. Shah Dr. (Smt.) B. K. Shah

2011 ◽  
Vol 121-126 ◽  
pp. 126-131 ◽  
Author(s):  
Qing Lei Xu ◽  
Tao Meng ◽  
Miao Zhou Huang

In this paper, effects of nano-CaCO3 on compressive strength and Microstructure of high strength concrete in standard curing temperature(21±1°C) and low curing temperature(6.5±1°C) was studied. In order to improve the early strength of the concrete in low temperature, the early strength agent calcium nitrite was added into. Test results indicated that 0.5% dosage of nano-CaCO3 could inhibit the effect of calcium nitrite as early strength agent, but 1% and 2% dosage of nano-CaCO3 could improve the strength of the concrete by 13% and 18% in standard curing temperature and by 17% and 14% in low curing temperature at the age of 3days. According to the XRD spectrum, with the dosage up to 1% to 2%, nano-CaCO3 can change the orientation index significantly, leading to the improvement of strength of concrete both in standard curing temperature and low curing temperature.


Sign in / Sign up

Export Citation Format

Share Document