scholarly journals Low-Voltage SEM of Natural Plant Fibers: Microstructure Properties (Surface and Cross-Section) and their Link to the Tensile Properties

2017 ◽  
Vol 200 ◽  
pp. 295-302 ◽  
Author(s):  
Sameer F. Hamad ◽  
Nicola Stehling ◽  
C. Holland ◽  
J.P. Foreman ◽  
C. Rodenburg
Fibers ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 6
Author(s):  
Rémy Legrand Ndoumou ◽  
Damien Soulat ◽  
Ahmad Rashed Labanieh ◽  
Manuela Ferreira ◽  
Lucien Meva’a ◽  
...  

Plant fibers are being increasingly explored for their use in engineering polymers and composites, and many works have described their properties, especially for flax and hemp fibers. Nevertheless, the availability of plant fibers varies according to the geographical location on the planet. This study presents the first work on the mechanical properties of a tropical fiber extracted from the bast of Cola lepidota (CL) plant. After a debarking step, CL fibers were extracted manually by wet-retting. The tensile properties are first identified experimentally at the fibers scale, and the analysis of the results shows the great influence of the cross-section parameters (diameter, intrinsic porosities) on these properties. Tensile properties of CL fibers are also predicted by the impregnated fiber bundle test (IFBT). At this scale of bundles, a hackling step, which reduces shives and contributes to the parallelization of the fibers within bundles, improves tensile properties predicted by IFBT. The comparison with the properties of plant fibers given in the literature shows that CL fibers have tensile properties in the same range as kenaf, flax or hemp fibers.


Author(s):  
Matthew T. Johnson ◽  
Ian M. Anderson ◽  
Jim Bentley ◽  
C. Barry Carter

Energy-dispersive X-ray spectrometry (EDS) performed at low (≤ 5 kV) accelerating voltages in the SEM has the potential for providing quantitative microanalytical information with a spatial resolution of ∼100 nm. In the present work, EDS analyses were performed on magnesium ferrite spinel [(MgxFe1−x)Fe2O4] dendrites embedded in a MgO matrix, as shown in Fig. 1. spatial resolution of X-ray microanalysis at conventional accelerating voltages is insufficient for the quantitative analysis of these dendrites, which have widths of the order of a few hundred nanometers, without deconvolution of contributions from the MgO matrix. However, Monte Carlo simulations indicate that the interaction volume for MgFe2O4 is ∼150 nm at 3 kV accelerating voltage and therefore sufficient to analyze the dendrites without matrix contributions.Single-crystal {001}-oriented MgO was reacted with hematite (Fe2O3) powder for 6 h at 1450°C in air and furnace cooled. The specimen was then cleaved to expose a clean cross-section suitable for microanalysis.


Polymers ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 438
Author(s):  
Ching Hao Lee ◽  
Abdan Khalina ◽  
Seng Hua Lee

Plant fibers have become a highly sought-after material in the recent days as a result of raising environmental awareness and the realization of harmful effects imposed by synthetic fibers. Natural plant fibers have been widely used as fillers in fabricating plant-fibers-reinforced polymer composites. However, owing to the completely opposite nature of the plant fibers and polymer matrix, treatment is often required to enhance the compatibility between these two materials. Interfacial adhesion mechanisms are among the most influential yet seldom discussed factors that affect the physical, mechanical, and thermal properties of the plant-fibers-reinforced polymer composites. Therefore, this review paper expounds the importance of interfacial adhesion condition on the properties of plant-fiber-reinforced polymer composites. The advantages and disadvantages of natural plant fibers are discussed. Four important interface mechanism, namely interdiffusion, electrostatic adhesion, chemical adhesion, and mechanical interlocking are highlighted. In addition, quantifying and analysis techniques of interfacial adhesion condition is demonstrated. Lastly, the importance of interfacial adhesion condition on the performances of the plant fiber polymer composites performances is discussed. It can be seen that the physical and thermal properties as well as flexural strength of the composites are highly dependent on the interfacial adhesion condition.


2017 ◽  
Vol 09 (04) ◽  
pp. 1750045 ◽  
Author(s):  
Yucheng Zhong ◽  
Umeyr Kureemun ◽  
Le Quan Ngoc Tran ◽  
Heow Pueh Lee

Natural fibers are extracted from natural resources such as stems of plants. In contrast to synthetic fibers (e.g., carbon fibers), natural fibers are from renewable resources and are eco-friendlier. Plant fibers are important members of natural fibers. Review papers discussing the microstructures, performances and applications of natural plant fiber composites are available in the literature. However, there are relatively fewer review reports focusing on the modeling of the mechanical properties of plant fiber composites. The microstructures and mechanical behavior of plant fiber composites are briefly introduced by highlighting their characteristics that need to be considered prior to modeling. Numerical works that have already been carried out are discussed and summarized. Unlike synthetic fibers, natural plant fiber composites have not received sufficient attention in terms of numerical simulations. Existing technical challenges in this subject are summarized to provide potential opportunities for future research.


2011 ◽  
Vol 332-334 ◽  
pp. 121-125
Author(s):  
Xing Mei Guo ◽  
Yi Ping Qiu

The use of natural plant fibers as reinforcing fillers in fiber-polymer composites has drawn much interest in recent years. Natural plant fibers as reinforcing fillers have several advantages over inorganic fillers such as glass fibers; they are abundant, readily available, renewable, inexpensive, biodegradable, of low density, and of high specific strength. Hemp fibers are one of the most attractive natural plant fibers for fiber-reinforced composites because of their exceptional specific stiffness. In this review, we summarize recent progress in developments of the hemp fiber reinforced composites such as hemp fiber reinforced unsaturated polyester (UPE), hemp fiber reinforced polypropylene (PP), hemp fiber reinforced epoxy composites, and so on, illustrate with examples how they work, and discuss their intrinsic fundamentals and optimization designs. We are expecting the review to pave the way for developing fiber-polymer composites with higher strength.


2012 ◽  
Vol 602-604 ◽  
pp. 1887-1890
Author(s):  
Jiang Hua Deng ◽  
Chao Tang ◽  
Yi Ming Zheng ◽  
Yan Ran Zhan

Electromagnetic riveting is a kind of energy conversion technology and forming coil is the key component of energy conversion. Coil parameters include the turns and wire cross section size. The effects of coil parameters on discharge current, riveting force, rivet deformation degree and energy conversion rate were investigated by experimental method in low voltage electromagnetic riveting. The results show that with the coil turns increasing, coil inductance increases, discharge current amplitude decreases, cycle increases, rivet deformation degree increases and the energy conversion rate improves when the coil wire cross section size is the same. And with the coil wire width increasing, the coil resistance decreases, discharge current amplitude increases, rivet deformation degree increases and the energy conversion rate improves when the coil turns is same. By rational design of coil turns and wire section size, low voltage electromagnetic riveting is an effective way to realize deformation of strain rate sensitive material TA1 rivets.


Sign in / Sign up

Export Citation Format

Share Document