scholarly journals Natural Plant Fiber Composites-Constituent Properties and Challenges in Numerical Modeling and Simulations

2017 ◽  
Vol 09 (04) ◽  
pp. 1750045 ◽  
Author(s):  
Yucheng Zhong ◽  
Umeyr Kureemun ◽  
Le Quan Ngoc Tran ◽  
Heow Pueh Lee

Natural fibers are extracted from natural resources such as stems of plants. In contrast to synthetic fibers (e.g., carbon fibers), natural fibers are from renewable resources and are eco-friendlier. Plant fibers are important members of natural fibers. Review papers discussing the microstructures, performances and applications of natural plant fiber composites are available in the literature. However, there are relatively fewer review reports focusing on the modeling of the mechanical properties of plant fiber composites. The microstructures and mechanical behavior of plant fiber composites are briefly introduced by highlighting their characteristics that need to be considered prior to modeling. Numerical works that have already been carried out are discussed and summarized. Unlike synthetic fibers, natural plant fiber composites have not received sufficient attention in terms of numerical simulations. Existing technical challenges in this subject are summarized to provide potential opportunities for future research.

Author(s):  
Piyush P. Gohil ◽  
Kundan Patel ◽  
Vijaykumar Chaudhary ◽  
Ronak Ramjiyani

The advancement of polymer composites containing natural fibers as a manageable option material for certain designing applications, especially aviation and car applications, is a well-known area of investigation. Nevertheless, the high mechanical properties connected with synthetic fibers they are awesome and lavish contrasted with natural fibers. The utilization of natural plant fibers and mixes of natural and synthetic fibers for making ease building materials has produced much interest recently. In the present work, bamboo–glass hybrid polyester composites were produced and their mechanical properties like elasticity and flexural quality were assessed for different weight fraction and distinctive stacking sequence. The outcomes observed that bamboo–glass mixture composites offered the benefits of both natural and synthetic fibers. It is also observed that hybridization started a material with general intermediate properties between pure glass and pure bamboo. However, the significance of controlling the stacking grouping to upgrade properties was evident.


2012 ◽  
Vol 626 ◽  
pp. 756-761
Author(s):  
Rohani Mustapha ◽  
Mohd Syahrizul Chik ◽  
Mohamad Awang

Recently there has been a surge of interest in using natural fibers from renewable resources as alternative to replace traditional synthetic fibers. This is due to the increased environmental and sustainability awareness. In this study, high density polyethylene (HDPE) was compounded with untreated and treated agro-waste natural fibers Alpinia galanga. Alkali treatment using sodium hydroxide was used to improve the interface adhesion between fibers and polyethylene matrix. Polyethylene-Alpinia galanga composites were prepared using an injection molding machine at various fiber contents of 3, 6, 10 and 15 wt% and characterized. Experimental studies have shown that in general fibers function as filler in polyethylene composites and exhibited tensile strength relatively close to the strength of the unfilled composites. The increasing of Alpinia galanga content decreased elongation at break and increased the Youngs modulus of Polyethylene-Alpinia galanga composites. It was also observed that treated fiber composites showed higher thermal stability than that of untreated fiber composites.


Polymers ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 438
Author(s):  
Ching Hao Lee ◽  
Abdan Khalina ◽  
Seng Hua Lee

Plant fibers have become a highly sought-after material in the recent days as a result of raising environmental awareness and the realization of harmful effects imposed by synthetic fibers. Natural plant fibers have been widely used as fillers in fabricating plant-fibers-reinforced polymer composites. However, owing to the completely opposite nature of the plant fibers and polymer matrix, treatment is often required to enhance the compatibility between these two materials. Interfacial adhesion mechanisms are among the most influential yet seldom discussed factors that affect the physical, mechanical, and thermal properties of the plant-fibers-reinforced polymer composites. Therefore, this review paper expounds the importance of interfacial adhesion condition on the properties of plant-fiber-reinforced polymer composites. The advantages and disadvantages of natural plant fibers are discussed. Four important interface mechanism, namely interdiffusion, electrostatic adhesion, chemical adhesion, and mechanical interlocking are highlighted. In addition, quantifying and analysis techniques of interfacial adhesion condition is demonstrated. Lastly, the importance of interfacial adhesion condition on the performances of the plant fiber polymer composites performances is discussed. It can be seen that the physical and thermal properties as well as flexural strength of the composites are highly dependent on the interfacial adhesion condition.


2018 ◽  
Vol 281 ◽  
pp. 266-271 ◽  
Author(s):  
Shi Ju Wei ◽  
Jian Li Tan ◽  
Wan Li Lu ◽  
Le Ping Liu ◽  
Shu Juan Yu ◽  
...  

Geopolymer-based plant fiber composites were fabricated with metakaolin, alkaline sodium silicate and plant fibers. In this paper, orthogonal test and single factor analysis were used to study the influence of water glass modulus, solid liquid ratio and fiber content on bending strength. The results show that sequence of influence factors for bending strength was: solid to liquid ratio > fiber content > water glass modulus. When the water glass modulus is 1.7, the fiber content is 8% and the solid to liquid ratio is 1:1.4, the bending strength is up to 10.44MPa, which exceeds the Standard requirements (9MPa) specified by the China National Standard (GB/T 24312-2009). The micro-morphology of SEM indicates that the mix of plant fiber can enhance the toughness of geopolymer.


2016 ◽  
Vol 854 ◽  
pp. 59-64
Author(s):  
S. Syath Abuthakeer ◽  
Ramakrishnan Vasudaa ◽  
Afsana Nizamudeen

Today’s technological innovations call for continual improvement in the field of material science to substitute the heavy structures with lightweight materials without compromising the strength. For this purpose composite materials (combination of two or more materials) are developed. The incorporation of natural fibers as reinforcing agent in both thermoset and thermoplastic polymer composites has gained increasing applications both in many areas of engineering and technology. A variety of natural fibers based polymer composite materials have been developed using modified synthetic strategies to extend its application from automotive to biomedical fields. The eco friendliness and reduction in wear and tear aspects in machineries with the use of natural fiber composites also has been captured in this paper. This paper is an earnest compilation of the data regarding a variety of natural fibers, their physical and mechanical properties, their resilience and strength. Considerable effort has been put in bringing the data on various natural fiber composites in one place by cutting out the details from various sources so as to make it as a ready reckoner for any researcher for future research in this area.


2020 ◽  
pp. 152808372093419 ◽  
Author(s):  
Hilal Olcay ◽  
Emine Dilara Kocak

Recently, due to environmental concerns and dependence on depleted resources, the use of renewable resources has become important in the preparation of various industrial materials. The use of natural fibers instead of petroleum-based synthetic fibers traditionally used in the production of composite materials provides many advantages in terms of both environmental and cost. The utilization of agricultural wastes as natural fibers also contributes significantly to the reduction and reuse of wastes, which is one of the objectives of sustainable development. In this study, artichoke stem waste fibers reinforced polyurethane foam composites were obtained. The fibers were treated with alkaline surface treatment at different concentrations (5% and 10%) of sodium hydroxide (NaOH) and durations (5, 10 and 15 min). The optimal alkali method was determined and applied to the fibers and its effect on composites was also investigated. Treated and untreated fibers were combined with polyurethane (PU) matrix at different reinforcement ratios (5, 10, 15 and 20%) to produce bio-fiber based composites. Depending on these reinforcement rates and alkali treatment, the mechanical properties of composites such as strength, elongation and modulus were investigated. The composites, which have the best mechanical properties, were selected and these composites were evaluated in terms of thermal and sound insulation with considering their morphological properties. It has been determined that artichoke stem waste fibers can provide good mechanical, thermal and sound insulation properties in the composites, and thus it has been found that great advantages can be achieved in terms of cost and ecology.


2019 ◽  
Vol 8 (3) ◽  
pp. 2450-2453

Usage of Natural Fiber Composites (NFC) is increased rapidly due to the bio degradability nature of the fibers. These natural fibers are mixed with synthetic fibers to obtain better mechanical properties. In this study, pine apple and glass fiber reinforced epoxy composites are developed and their mechanical properties were evaluated. Composites were prepared by varying the fibers content and by using hand layup process with glass moulds of size 160 x 160 x 3 mm3 . The obtained laminates were sliced as per the ASTM criterion to test the properties. Higher glass fiber content in the composite specimen obtained higher mechanical properties. The composites can be utilized for the purpose of manufacturing components like doors panels, desks, roof tops etc.


2019 ◽  
Vol 12 (1) ◽  
pp. 37-44
Author(s):  
Jiankang Wang ◽  
Zhijian Li ◽  
Hongwei Lu

Background: With the improvement of environment protection awareness, human beings have gradually become aware of that the plastic products, waste are harmful to the human living environment. Therefore, research and application of biodegradable materials that do not rely on petroleum resources have become hot topics. Researchers have accelerated the development and promotion of plant fiber because they are good flexibility, relatively rough surface and biodegradable. Objective: The development of plant fiber composites is reviewed, including composition ratio, interfacial modification, processing technology, and the effects of these technologies on the properties of plant fiber composites. Methods: The paper reviews various patents and research developments about plant fiber composite materials. It also analyzes the advantages and disadvantages of various patents and technologies from the aspects of biodegradable ability, mechanical properties, dispersing performance, processing properties, cost, and so on. Results: The component proportion, interface modification, and processing technology of plant fiber composite materials are prospected to improve the quality and application of the plant fiber composite materials in the future development. Conclusion: The considerable attention has been paid on the technology of biodegradable plant fiber composite. The recent patents and technologies have shown us a wider application in biodegradable plant fiber composite. The problems how to improve the mechanical properties of plant fibers, the dispersion properties of plant fibers and resins, and the processing properties of composite materials, will need more and more methods and equipment to solve or simplify.


Sign in / Sign up

Export Citation Format

Share Document