scholarly journals Rapid prototyping and physical modelling in the development of a new additive manufacturing process for aluminium alloys

2019 ◽  
Vol 34 ◽  
pp. 489-496 ◽  
Author(s):  
Jørgen Blindheim ◽  
Torgeir Welo ◽  
Martin Steinert
2013 ◽  
Vol 315 ◽  
pp. 63-67 ◽  
Author(s):  
Muhammad Fahad ◽  
Neil Hopkinson

Rapid prototyping refers to building three dimensional parts in a tool-less, layer by layer manner using the CAD geometry of the part. Additive Manufacturing (AM) is the name given to the application of rapid prototyping technologies to produce functional, end use items. Since AM is relatively new area of manufacturing processes, various processes are being developed and analyzed for their performance (mainly speed and accuracy). This paper deals with the design of a new benchmark part to analyze the flatness of parts produced on High Speed Sintering (HSS) which is a novel Additive Manufacturing process and is currently being developed at Loughborough University. The designed benchmark part comprised of various features such as cubes, holes, cylinders, spheres and cones on a flat base and the build material used for these parts was nylon 12 powder. Flatness and curvature of the base of these parts were measured using a coordinate measuring machine (CMM) and the results are discussed in relation to the operating parameters of the process.The result show changes in the flatness of part with the depth of part in the bed which is attributed to the thermal gradient within the build envelope during build.


2011 ◽  
Vol 2011 ◽  
pp. 1-7 ◽  
Author(s):  
A. Tsouknidas

Additive manufacturing has been introduced in the early 80s and has gained importance as a manufacturing process ever since. Even though the inception of the implicated processes predominantly focused on prototyping purposes, during the last years rapid prototyping (RP) has emerged as a key enabling technology for the fabrication of highly customized, functionally gradient materials. This paper reviews friction-related wear phenomena and the corresponding deterioration mechanisms of RP-generated components as well as the potential of improving the implicated materials' wear resistance without significantly altering the process itself. The paper briefly introduces the concept of RP technologies and the implicated materials, as a premises to the process-dependent wear progression of the generated components for various degeneration scenarios (dry sliding, fretting, etc.).


2020 ◽  
Vol 33 (1) ◽  
Author(s):  
Bin Chen ◽  
Peng Chen ◽  
Yongjun Huang ◽  
Xiangxi Xu ◽  
Yibo Liu ◽  
...  

Abstract Diamond tools with orderly arrangements of diamond grits have drawn considerable attention in the machining field owing to their outstanding advantages of high sharpness and long service life. This diamond super tool, as well as the manufacturing equipment, has been unavailable to Chinese enterprises for a long time due to patents. In this paper, a diamond blade segment with a 3D lattice of diamond grits was additively manufactured using a new type of cold pressing equipment (AME100). The equipment, designed with a rotary working platform and 16 molding stations, can be used to additively manufacture segments with diamond grits arranged in an orderly fashion, layer by layer; under this additive manufacturing process, at least 216000 pcs of diamond green segments with five orderly arranged grit layers can be produced per month. The microstructure of the segment was observed via SEM and the diamond blade fabricated using these segments was compared to other commercial cutting tools. The experimental results showed that the 3D lattice of diamond grits was formed in the green segment. The filling rate of diamond grits in the lattice could be guaranteed to be above 95%; this is much higher than the 90% filling rate of the automatic array system (ARIX). When used to cut stone, the cutting amount of the blade with segments made by AME100 is two times that of ordinary tools, with the same diamond concentration. When used to dry cut reinforced concrete, its cutting speed is 10% faster than that of ARIX. Under wet cutting conditions, its service life is twice that of ARIX. By applying the machine vision online inspection system and a special needle jig with a negative pressure system, this study developed a piece of additive manufacturing equipment for efficiently fabricating blade segments with a 3D lattice of diamond grits.


Author(s):  
Richard A. Michi ◽  
Alex Plotkowski ◽  
Amit Shyam ◽  
Ryan R. Dehoff ◽  
Sudarsanam Suresh Babu

Author(s):  
Paul Witherell ◽  
Shaw Feng ◽  
Timothy W. Simpson ◽  
David B. Saint John ◽  
Pan Michaleris ◽  
...  

In this paper, we advocate for a more harmonized approach to model development for additive manufacturing (AM) processes, through classification and metamodeling that will support AM process model composability, reusability, and integration. We review several types of AM process models and use the direct metal powder bed fusion AM process to provide illustrative examples of the proposed classification and metamodel approach. We describe how a coordinated approach can be used to extend modeling capabilities by promoting model composability. As part of future work, a framework is envisioned to realize a more coherent strategy for model development and deployment.


Sign in / Sign up

Export Citation Format

Share Document