scholarly journals Blade Segment with a 3D Lattice of Diamond Grits Fabricated via an Additive Manufacturing Process

2020 ◽  
Vol 33 (1) ◽  
Author(s):  
Bin Chen ◽  
Peng Chen ◽  
Yongjun Huang ◽  
Xiangxi Xu ◽  
Yibo Liu ◽  
...  

Abstract Diamond tools with orderly arrangements of diamond grits have drawn considerable attention in the machining field owing to their outstanding advantages of high sharpness and long service life. This diamond super tool, as well as the manufacturing equipment, has been unavailable to Chinese enterprises for a long time due to patents. In this paper, a diamond blade segment with a 3D lattice of diamond grits was additively manufactured using a new type of cold pressing equipment (AME100). The equipment, designed with a rotary working platform and 16 molding stations, can be used to additively manufacture segments with diamond grits arranged in an orderly fashion, layer by layer; under this additive manufacturing process, at least 216000 pcs of diamond green segments with five orderly arranged grit layers can be produced per month. The microstructure of the segment was observed via SEM and the diamond blade fabricated using these segments was compared to other commercial cutting tools. The experimental results showed that the 3D lattice of diamond grits was formed in the green segment. The filling rate of diamond grits in the lattice could be guaranteed to be above 95%; this is much higher than the 90% filling rate of the automatic array system (ARIX). When used to cut stone, the cutting amount of the blade with segments made by AME100 is two times that of ordinary tools, with the same diamond concentration. When used to dry cut reinforced concrete, its cutting speed is 10% faster than that of ARIX. Under wet cutting conditions, its service life is twice that of ARIX. By applying the machine vision online inspection system and a special needle jig with a negative pressure system, this study developed a piece of additive manufacturing equipment for efficiently fabricating blade segments with a 3D lattice of diamond grits.

2013 ◽  
Vol 315 ◽  
pp. 63-67 ◽  
Author(s):  
Muhammad Fahad ◽  
Neil Hopkinson

Rapid prototyping refers to building three dimensional parts in a tool-less, layer by layer manner using the CAD geometry of the part. Additive Manufacturing (AM) is the name given to the application of rapid prototyping technologies to produce functional, end use items. Since AM is relatively new area of manufacturing processes, various processes are being developed and analyzed for their performance (mainly speed and accuracy). This paper deals with the design of a new benchmark part to analyze the flatness of parts produced on High Speed Sintering (HSS) which is a novel Additive Manufacturing process and is currently being developed at Loughborough University. The designed benchmark part comprised of various features such as cubes, holes, cylinders, spheres and cones on a flat base and the build material used for these parts was nylon 12 powder. Flatness and curvature of the base of these parts were measured using a coordinate measuring machine (CMM) and the results are discussed in relation to the operating parameters of the process.The result show changes in the flatness of part with the depth of part in the bed which is attributed to the thermal gradient within the build envelope during build.


Author(s):  
K. Blake Perez ◽  
Christopher B. Williams

The layer-by-layer nature of additive manufacturing (AM) allows for access to the entire build volume of an artifact during manufacture, including its internal structure. Internal voids are accessible during the build process and allow for components to be embedded and sealed with subsequently printed layers. When AM is combined with Direct Write (DW) of conductive materials, the resulting hybrid process enables the direct manufacture of parts with embedded electronics, including interconnects and sensors. However, the hybridization of DW and AM technologies is non-trivial due to (i) identifying DW materials and processes that are compatible with AM infrastructure, throughput and resolution, (ii) temperature processing requirements, and (iii) interactions between the two materials. In this paper, the authors explore DW technologies and materials to identify those that are most compatible with AM. From this exploration, the authors abstract a set of generalized design considerations for the design of a hybrid AM and DW process. These considerations are then employed in a systematic design process in which a DW system for depositing conductive materials during the PolyJet manufacturing process is realized. The resulting system is able to create embedded functional electronic interconnects and sensors in printed parts composed of both stiff and flexible polymers.


Author(s):  
Vivek Kumar P ◽  
◽  
Soundrapandian E ◽  
Jenin Joseph A ◽  
Kanagarajan E ◽  
...  

Additive manufacturing process is a method of layer by layer joining of materials to create components from three-dimensional (3D) model data. After their introduction in the automotive sector a decade ago, it has seen a significant rise in research and growth. The Additive manufacturing is classified into different types based upon the energy source use in the fabrication process. In our project, we used self-build CNC machine that runs MACH3 software, as well as the MACH3 controller is used to control the welding torch motion for material addition through three axis movement (X, Y and Z). In the project we used ER70 S-6 weld wire for the fabrication and examined its microstructure and mechanical properties. Different layers of the specimen had different microstructures, according to microstructural studies of the product. Rockwell hardness tester used for testing hardness of the product. According to the observation of the part fabricated components using the Wire Arc Additive Manufacturing process outperformed the mechanical properties of mild steel casting process. The product fabricated by Wire Arc Additive Manufacturing process properties is superior to conventional casting process.


Author(s):  
Farzaneh Kaji ◽  
Ahmad Barari

The final dimensional and geometric inaccuracies, and the resulting high surface roughness of the products have been the major problems in employing Additive Manufacturing (AM) technologies. Most of commonly used Additive manufacturing (AM) technologies are developed based on a layer-based manufacturing process to fabricate 3D models. The main critical issue in AM which reduces the surface integrity of the final products is the stair case error which happens due to layer by layer manufacturing process. A new method is presented to model the surface roughness of FDM parts based on considering a new geometry for the cusps. Variety of observations were conducted to model the exact geometry of the cusp. Considering that cusp geometry affects the surface roughness directly, the new geometry was used to predict the surface roughness distribution as a function of layer thickness and surface angle of the final FDM products. The model was validated by designing a set of experiments using 3D measurements of the surface roughness under high resolution surface topography device and the predicted model was in a good agreement with the experimental results.


2021 ◽  
Author(s):  
Fei Chen ◽  
DINESH PINISETTY ◽  
Nikhil Gupta

Abstract Additive manufacturing (AM) has been adopted for manufacturing complex shaped highly customized components for aerospace, automotive, and medical fields, where intellectual property protection and counterfeit detection are major concerns. New technologies such as Blockchain have been promising in supply chain authentication. However, AM due to layer-by-layer manufacturing process provides opportunities of embedding information inside the part during manufacturing, which has been explored recently to embed identification codes inside the parts. The present work studies the possibility of printing a barcode inside the additively manufactured part and develops a scheme to obfuscate the code design to read differently from different directions to enhance the security and protect the intellectual property. The embedded three-dimensional codes are scanned using a micro-CT scan. This scheme of embedded obfuscated codes proves to be a highly customizable and efficient process while securing product design files.


Author(s):  
Mikhail Osanov ◽  
James K. Guest

The rapid advance of additive manufacturing technologies has provided new opportunities for creating complex structural shapes. In order to fully exploit these opportunities, however, engineers must re-think the design process and leverage these new capabilities while respecting manufacturing constraints inherent in various processes. Topology optimization, as a free-from design tool, is a potentially powerful approach to addressing this design challenge provided the manufacturing process is properly accounted for. This work examines geometric constraints related to feature size and the layer-by-layer nature of the manufacturing process. A simple modification to the Heaviside Projection Method, an approach for naturally achieving geometric constraints in topology optimization, is proposed and demonstrated to have clear, understandable impact on three-dimensional optimized beam designs.


2019 ◽  
Vol 269 ◽  
pp. 05002
Author(s):  
Priyantomo Agustinus Ananda

WAAM ( Wire + Arc Additive Manufacturing) is a process of adding material layer by layer in order to build a near net shape components. It shows a further promising future for fabricating large expensive metal components with complex geometry. Engineering Procurement and Construction (EPC) company as one of the industrial section which related with engineering design and products, wide range of material type, and shop based or site based manufacturing process have been dealing with conventional manufacturing and procurement process in order to fulfill its requirement for custom parts and items for the project completion purpose. During the conventional process, there is a risk during the transportation of the products from the manufacturing shop to then site project, this risk is even greater when the delivery time take part as one of the essential part which affect the project schedule. Wire Arc Additive Manufacturing process offering an alternative process to shorten the delivery time and process for a selected material and engineered items, with the consideration of essential variables which can affect the final products of WAAM process, such as : heat input, wire feed speed, travel speed, shielding gas, welding process and robotic system applied. In this paper, the possibilities of WAAM application in EPC company will be assessed, an in depth literature review of the various process which possible to applied, include the loss and benefit compared with conventional method will be presented. The main objective is to identify the current challenge and the prospect of WAAM application in EPC company.


2022 ◽  
pp. 138-176
Author(s):  
Prafull Agarwal ◽  
Rishi Kurian ◽  
Ravi Kumar Gupta

Additive Manufacturing (AM) is a layer-by-layer deposition of material for the production of the desired product. The design flexibility associated with AM is much more when compared to the conventional manufacturing process. To manufacture a part with AM, two things play a critical role: the designing of the part and the other is the placement of the part in the build volume. As already mentioned, design flexibility associated with AM is much more when compared to the conventional manufacturing process. However, to correctly implement the design flexibility, we need a knowledge base at our disposal so that appropriate features can be used for the part production. The AM feature taxonomy forms the backbone of the knowledge base. The taxonomy comprises AM features classified based on different categories, which helps us understand every feature's importance. Talking about the part placement, we know that optimal placement is the key factor that makes the AM process economically feasible.


Author(s):  
Hossein Taheri ◽  
Lucas W. Koester ◽  
Timothy A. Bigelow ◽  
Eric J. Faierson ◽  
Leonard J. Bond

Additive manufacturing (AM) is based on layer-by-layer addition of materials. It gives design flexibility and potential to decrease costs and manufacturing lead time. Because the AM process involves incremental deposition of materials, it provides unique opportunities to investigate the material quality as it is deposited. Development of in situ monitoring methodologies is a vital part of the assessment of process performance and understanding of defects formation. In situ process monitoring provides the capability for early detection of process faults and defects. Due to the sensitivity of AM processes to different factors such as laser and material properties, any changes in aspects of the process can potentially have an impact on the part quality. As a result, in-process monitoring of AM is crucial to assure the quality, integrity, and safety of AM parts. There are various sensors and techniques that have been used for in situ process monitoring. In this work, acoustic signatures were used for in situ monitoring of the metal direct energy deposition (DED) AM process operating under different process conditions. Correlations were demonstrated between metrics and various process conditions. Demonstrated correlation between the acoustic signatures and the manufacturing process conditions shows the capability of acoustic technique for in situ monitoring of the additive manufacturing process. To identify the different process conditions, a new approach of K-means statistical clustering algorithm is used for the classification of different process conditions, and quantitative evaluation of the classification performance in terms of cohesion and isolation of the clusters. The identified acoustic signatures, quantitative clustering approach, and the achieved classification efficiency demonstrate potential for use in in situ acoustic monitoring and quality control for the additive manufacturing process.


2020 ◽  
Vol 7 (10) ◽  
pp. 247-254
Author(s):  
Omer Eyercioglu ◽  
Yusuf Atalay ◽  
Mehmet Aladag

Wire Arc Additive Manufacturing (WAAM) is a relatively new manufacturing method. It is a novel technique to build net-shaped or near-net-shaped metal components in a layer-by-layer manner via applying metal wire and selection of a heat source such as laser beam, electron beam, or electric arc. WAAM process is preferable as an alternative to traditional manufacturing methods especially for complex featured and large scale solid parts manufacturing and it is particularly used for aerospace structural components, manufacturing and repairing of dies/molds. TIG welding-based WAAM method is implemented by depositing continuous wire melted via heat. In this study, the overhang (self-supporting) angle in TIG welding-based wire arc additive manufacturing process is investigated. The overhang angles are the angles at which a 3D printer can build tapered (overhang) surfaces without the need to supporting material below the printing layer. The material, bead height, TIG weld parameters and the environment temperature (cooling rate of printed layer) are the parameters which affect the overhang angle. The results show that the maximum overhang angle is also dependent on the temperature of the previous layer. For the selected set of process parameters, the maximum overhang angle is found as 28o, if the temperature of the previous layer is cooled to 150oC before the subsequent layer is deposited.


Sign in / Sign up

Export Citation Format

Share Document