scholarly journals Influence of a steam-explosion pre-treatment on the methane yield and kinetics of anaerobic digestion of two-phase olive mil solid waste or alperujo

2016 ◽  
Vol 102 ◽  
pp. 361-369 ◽  
Author(s):  
Bárbara Rincón ◽  
Guillermo Rodríguez-Gutiérrez ◽  
Lucía Bujalance ◽  
Juan Fernández-Bolaños ◽  
Rafael Borja
Author(s):  
D. de la Lama-Calvente ◽  
M. J. Fernández-Rodríguez ◽  
J. Llanos ◽  
J. M. Mancilla-Leytón ◽  
R. Borja

AbstractThe biomass valorisation of the invasive brown alga Rugulopteryx okamurae (Dictyotales, Phaeophyceae) is key to curbing the expansion of this invasive macroalga which is generating tonnes of biomass on southern Spain beaches. As a feasible alternative for the biomass management, anaerobic co-digestion is proposed in this study. Although the anaerobic digestion of macroalgae barely produced 177 mL of CH4 g−1 VS, the co-digestion with a C-rich substrate, such as the olive mill solid waste (OMSW, the main waste derived from the two-phase olive oil manufacturing process), improved the anaerobic digestion process. The mixture improved not only the methane yield, but also its biodegradability. The highest biodegradability was found in the mixture 1 R. okamurae—1 OMSW, which improved the biodegradability of the macroalgae by 12.9% and 38.1% for the OMSW. The highest methane yield was observed for the mixture 1 R. okamurae—3 OMSW, improving the methane production of macroalgae alone by 157% and the OMSW methane production by 8.6%. Two mathematical models were used to fit the experimental data of methane production time with the aim of assessing the processes and obtaining the kinetic constants of the anaerobic co-digestion of different combination of R. okamurae and OMSW and both substrates independently. First-order kinetic and the transference function models allowed for appropriately fitting the experimental results of methane production with digestion time. The specific rate constant, k (first-order model) for the mixture 1 R. okamurae- 1.5 OMSW, was 5.1 and 1.3 times higher than that obtained for the mono-digestion of single OMSW and the macroalga, respectively. In the same way, the transference function model revealed that the maximum methane production rate (Rmax) was also found for the mixture 1 R. okamurae—1.5 OMSW (30.4 mL CH4 g−1 VS day−1), which was 1.6 and 2.2 times higher than the corresponding to the mono-digestions of the single OMSW and sole R. okamurae (18.9 and 13.6 mL CH4 g−1 VS day−1), respectively.


2016 ◽  
Vol 67 (4) ◽  
pp. 165 ◽  
Author(s):  
B. Rincón ◽  
M. González de Canales ◽  
A. Martín ◽  
R. Borja

The effect of a microwave (MW) pre-treatment on two-phase olive mill solid residue (OMSR) or alperujo with a view to enhancing its anaerobic digestibility was studied. The MW pre-treatment was carried out at a power of 800 W and at a targeted temperature of 50 °C using different heating rates and holding times. The following specific energies were applied: 4377 kJ·kg TS-1 (MW1), 4830 kJ·kg TS-1 (MW2), 7170 kJ·kg TS-1 (MW3) and 7660 kJ·kg TS-1 (MW4). The maximum methane yield, 395±1 mL CH4·g VSadded-1, was obtained for MW4. The effect of the pre-treatment on the kinetics of the process was also studied. The methane production curves generated during the batch tests showed a first exponential stage and a second sigmoidal stage for all the cases studied. In the first stage, the kinetic constant for the pre-treatment MW1 was 54.8% higher than that obtained for untreated OMSR.


2003 ◽  
Vol 15 (2) ◽  
pp. 139-145 ◽  
Author(s):  
R Borja ◽  
B Rincón ◽  
F Raposo ◽  
J Alba ◽  
A Martı́n

2019 ◽  
Vol 13 (2) ◽  
pp. 112 ◽  
Author(s):  
Rifki Wahyu Kurnianto ◽  
Wiratni Budhijanto ◽  
Rochim Bakti Cahyono

Anaerobic digestion has been an attractive field of research in the era of energy crisis. Biogas, which is the product of anaerobic digestion, provides alternative energy, while at the same time it also prevents pollution due to organic waste accumulation. Among various organic wastes, dairy fat waste is a potential substrate for anaerobic digestion. Fat waste has high theoretical biogas potential because of its high lipid content. However, anaerobic digestion of organic waste with high lipid content is quite challenging. The main obstacle in anaerobic digestion of fat waste is its tendency to form insoluble floating layer on top of the liquid phase. This phenomenon hinders the access of hydrolytic bacteria to the substrate. Saponification is one of the methods to increase the solubility of the floating layer and hence to improve the availability of substrate for the bacteria. Saponification changes the lipid content into soap which has both polar and non-polar functional groups and the polar side will increase the solubility of the substrate in water. This study evaluated the effect of different dosage of base added as the reactant during saponification pre-treatment on the productivity of anaerobic digestion of dairy fat waste. The kinetics of the anaerobic digestion process was analyzed by mean of mathematical model. The variations of the alkaline dosages studied for saponification pre-treatment were 0.04 mol base/g sCOD; 0.02 mol base/g sCOD; and no pre-treatment for control reactor. This study proved that saponification increased the solubility of dairy fat waste. This result was confirmed by the hydrolysis constant value (kH) of 0.00782/day for reactor with saponification, which was twenty times of magnitude higher than the kH value of 0.00032/day in the reactor without saponification. However, the exposure to high pH during the saponification pre-treatment might somewhat inhibit indigenous acidogenic bacteria in the waste which results in lower methane yield in the reactors with saponification to be compared to the control reactor. A B S T R A KPeruraian anaerobik merupakan salah satu bidang riset yang sangat menarik perhatian dalam era krisis energi. Biogas tidak hanya menyediakan energi alternatif, tetapi juga dapat mencegah pencemaran akibat limbah organik. Limbah lemak susu adalah substrat yang potensial untuk proses peruraian anaerobik karena memiliki potensi biogas teoritis yang tinggi akibat kandungan lemaknya yang tinggi. Namun, peruraian anaerobik dari limbah organik dengan kandungan lemak yang tinggi memiliki tantangan tersendiri. Hambatan utama dalam peruraian anaerobik dari limbah lemak susu adalah kecenderungan untuk membentuk lapisan padatan yang tidak larut dan mengapung di bagian atas fase cair. Fenomena ini menghambat akses bakteri hidrolisis terhadap substrat. Saponifikasi adalah salah satu cara untuk meningkatkan kelarutan lapisan padatan tersebut, sehingga meningkatkan ketersediaan substrat untuk bakteri. Saponifikasi akan mengubah kandungan lemak menjadi sabun yang memiliki gugus fungsi polar maupun non-polar. Gugus fungsi yang bersifat polar akan meningkatkan kelarutan substrat dalam air. Studi ini mengevaluasi pengaruh dari berbagai dosis larutan basa yang ditambahkan sebagai reaktan selama perlakuan awal saponifikasi terhadap peruraian anaerobik limbah lemak susu. Kinetika proses peruraian anaerobik dianalisis dengan menggunakan model matematika. Variasi dosis yang diamati pengaruhnya untuk perlakuan awal saponifikasi adalah 0,04 mol basa/g sCOD; 0,02 mol basa/g sCOD; dan nol (tanpa perlakuan awal saponifikasi). Dari penelitian ini, terbukti bahwa saponifikasi berhasil meningkatkan kelarutan limbah lemak susu dan juga ditunjukkan oleh nilai konstanta hidrolisis (kH) 0,00782/hari lebih tinggi dua puluh kali lipat dibandingkan dengan nilai kH 0,00032/hari pada reaktor tanpa saponifikasi. Akan tetapi, penelitian ini juga mengindikasikan bahwa bakteri asidogenik bawaan substrat terhambat kinerjanya oleh paparan pH yang tinggi selama perlakuan awal saponifikasi berlangsung sehingga hasil gas metan yang diperoleh lebih rendah daripada reaktor kontrol.


Energies ◽  
2019 ◽  
Vol 12 (12) ◽  
pp. 2311 ◽  
Author(s):  
Spyridon Achinas ◽  
Yu Li ◽  
Vasileios Achinas ◽  
Gerrit Jan Willem Euverink

This article intends to promote the usage of potato peels as efficient substrate for the anaerobic digestion process for energy recovery and waste abatement. This study examined the performance of anaerobic digestion of potato peels in different inoculum-to-substrate ratios. In addition, the impact of combined treatment with cow manure and pretreatment of potato peels was examined. It was found that co-digestion of potato peel waste and cow manure yielded up to 237.4 mL CH4/g VSadded, whereas the maximum methane yield from the mono-digestion of potato peels was 217.8 mL CH4/g VSadded. Comparing the co-digestion to mono-digestion of potato peels, co-digestion in PPW/CM ratio of 60:40 increased the methane yield by 10%. In addition, grinding and acid hydrolysis applied to potato peels were positively effective in increasing the methane amount reaching 260.3 and 283.4 mL CH4/g VSadded respectively. Likewise, compared to untreated potato peels, pretreatment led to an elevation of the methane amount by 9% and 17% respectively and alleviated the kinetics of biogas production.


Processes ◽  
2020 ◽  
Vol 8 (10) ◽  
pp. 1224
Author(s):  
Nwabunwanne Nwokolo ◽  
Patrick Mukumba ◽  
KeChrist Obileke ◽  
Matthew Enebe

Anaerobic digestion is an efficient technology for a sustainable conversion of various organic wastes such as animal manure, municipal solid waste, agricultural residues and industrial waste into biogas. This technology offers a unique set of benefits, some of which include a good waste management technique, enhancement in the ecology of rural areas, improvement in health through a decrease of pathogens and optimization of the energy consumption of communities. The biogas produced through anaerobic digestion varies in composition, but it consists mainly of carbon dioxide methane together with a low quantity of trace gases. The variation in biogas composition are dependent on some factors namely the substrate type being digested, pH, operating temperature, organic loading rate, hydraulic retention time and digester design. However, the type of substrate used is of greater interest due to the direct dependency of microorganism activities on the nutritional composition of the substrate. Therefore, the aim of this review study is to provide a detailed analysis of the various types of organic wastes that have been used as a substrate for the sustainable production of biogas. Biogas formation from various substrates reported in the literature were investigated, an analysis and characterization of these substrates provided the pro and cons associated with each substrate. The findings obtained showed that the methane yield for all animal manure varied from 157 to 500 mL/gVS with goat and pig manure superseding the other animal manure whereas lignocellulose biomass varied from 160 to 212 mL/gVS. In addition, organic municipal solid waste and industrial waste showed methane yield in the ranges of 143–516 mL/gVS and 25–429 mL/gVS respectively. These variations in methane yield are primarily attributed to the nutritional composition of the various substrates.


Energies ◽  
2019 ◽  
Vol 12 (11) ◽  
pp. 2222 ◽  
Author(s):  
Antonio Serrano ◽  
Fernando G. Fermoso ◽  
Bernabé Alonso-Fariñas ◽  
Guillermo Rodríguez-Gutiérrez ◽  
Sergio López ◽  
...  

Steam-explosion is a promising technology for recovering phenolic compounds from olive mill solid waste (OMSW) due to its high impact on the structure of the fibre. Moreover, the recovery of the phenols, which are well-known microbial inhibitors, could improve the subsequent biomethanization of the dephenolized OMSW to produce energy. However, there is a considerable lack of knowledge about how the remaining phenolic compounds could affect a long-term biomethanization process of steam-exploded OMSW. This work evaluated a semi-continuous mesophilic anaerobic digestion of dephenolized steam-exploited OMSW during a long operational period (275 days), assessing different organic loading rates (OLRs). The process was stable at an OLR of 1 gVS/(L·d), with a specific production rate of 163 ± 28 mL CH4/(gVS·d). However, the increment of the OLR up to 2 gVS/(L·d) resulted in total exhaust of the methane production. The increment in the propionic acid concentration up to 1486 mg/L could be the main responsible factor for the inhibition. Regardless of the OLR, the concentration of phenolic compounds was always lower than the inhibition limits. Therefore, steam-exploited OMSW could be a suitable substrate for anaerobic digestion at a suitable OLR.


Sign in / Sign up

Export Citation Format

Share Document