A 2D CFD model investigation of the impact of obstacles and turbulence model on methane flame propagation

2021 ◽  
Vol 146 ◽  
pp. 95-107
Author(s):  
T. Nguyen ◽  
C. Strebinger ◽  
G.E. Bogin ◽  
J. Brune
2020 ◽  
Vol 143 (4) ◽  
Author(s):  
Chao Xu ◽  
Pinaki Pal ◽  
Xiao Ren ◽  
Magnus Sjöberg ◽  
Noah Van Dam ◽  
...  

Abstract In this study, lean mixed-mode combustion is numerically investigated using computational fluid dynamics (CFD) in a spark-ignition engine. A new E30 fuel surrogate is developed using a neural network model with matched octane numbers. A skeletal mechanism is also developed by automated mechanism reduction and by incorporating a NOx submechanism. A hybrid approach that couples the G-equation model and the well-stirred reactor model is employed for turbulent combustion modeling. The developed CFD model is shown to well predict pressure and apparent heat release rate (AHRR) traces compared with experiment. Two types of combustion cycles (deflagration-only and mixed-mode cycles) are observed. The mixed-mode cycles feature early flame propagation and subsequent end-gas auto-ignition, leading to two distinctive AHRR peaks. The validated CFD model is then employed to investigate the effects of NOx chemistry. The NOx chemistry is found to promote auto-ignition through the residual gas, while the deflagration phase remains largely unaffected. Sensitivity analysis is finally performed to understand effects of fuel properties, including heat of vaporization (HoV) and laminar flame speed (SL). An increased HoV tends to suppress auto-ignition through charge cooling, while the impact of HoV on flame propagation is insignificant. In contrast, an increased SL is found to significantly promote both flame propagation and end-gas auto-ignition. The promoting effect of SL on auto-ignition is not a direct chemical effect; it is rather caused by an advancement of the combustion phasing, which increases compression heating of the end-gas.


Author(s):  
Yogi Sheoran ◽  
Bruce Bouldin ◽  
P. Murali Krishnan

Inlet swirl distortion has become a major area of concern in the gas turbine engine community. Gas turbine engines are increasingly installed with more complicated and tortuous inlet systems, like those found on embedded installations on Unmanned Aerial Vehicles (UAVs). These inlet systems can produce complex swirl patterns in addition to total pressure distortion. The effect of swirl distortion on engine or compressor performance and operability must be evaluated. The gas turbine community is developing methodologies to measure and characterize swirl distortion. There is a strong need to develop a database containing the impact of a range of swirl distortion patterns on a compressor performance and operability. A recent paper presented by the authors described a versatile swirl distortion generator system that produced a wide range of swirl distortion patterns of a prescribed strength, including bulk swirl, twin swirl and offset swirl. The design of these swirl generators greatly improved the understanding of the formation of swirl. The next step of this process is to understand the effect of swirl on compressor performance. A previously published paper by the authors used parallel compressor analysis to map out different speed lines that resulted from different types of swirl distortion. For the study described in this paper, a computational fluid dynamics (CFD) model is used to couple upstream swirl generator geometry to a single stage of an axial compressor in order to generate a family of compressor speed lines. The complex geometry of the analyzed swirl generators requires that the full 360° compressor be included in the CFD model. A full compressor can be modeled several ways in a CFD analysis, including sliding mesh and frozen rotor techniques. For a single operating condition, a study was conducted using both of these techniques to determine the best method given the large size of the CFD model and the number of data points that needed to be run to generate speed lines. This study compared the CFD results for the undistorted compressor at 100% speed to comparable test data. Results of this study indicated that the frozen rotor approach provided just as accurate results as the sliding mesh but with a greatly reduced cycle time. Once the CFD approach was calibrated, the same techniques were used to determine compressor performance and operability when a full range of swirl distortion patterns were generated by upstream swirl generators. The compressor speed line shift due to co-rotating and counter-rotating bulk swirl resulted in a predictable performance and operability shift. Of particular importance is the compressor performance and operability resulting from an exposure to a set of paired swirl distortions. The CFD generated speed lines follow similar trends to those produced by parallel compressor analysis.


Fluids ◽  
2021 ◽  
Vol 6 (11) ◽  
pp. 404
Author(s):  
Charles Patrick Bounds ◽  
Sudhan Rajasekar ◽  
Mesbah Uddin

This paper presents a study on the flow dynamics involving vehicle interactions. In order to do so, this study first explores aerodynamic prediction capabilities of popular turbulence models used in computational fluid dynamics simulations involving tandem objects and thus, ultimately presents a framework for CFD simulations of ground vehicle platooning using a realistic vehicle model, DrivAer. Considering the availability of experimental data, the simulation methodology is first developed using a tandem arrangement of surface-mounted cubes which requires an understanding on the role of turbulence models and the impacts of the associated turbulence model closure coefficients on the prediction veracity. It was observed that the prediction accuracy of the SST k−ω turbulence model can be significantly improved through the use of a combination of modified values for the closure coefficients. Additionally, the initial validation studies reveal the inability of the Unsteady Reynolds-Averaged Navier-Stokes (URANS) approach to resolve the far wake, and its frailty in simulating tandem body interactions. The Improved Delayed Detached Eddy Simulations (IDDES) approach can resolve the wakes with a reasonable accuracy. The validated simulation methodology is then applied to the fastback DrivAer model at different longitudinal spacing. The results show that, as the longitudinal spacing is reduced, the trailing car’s drag is increased while the leading car’s drag is decreased which supports prior explanations of vortex impingement as the reason for drag changes. Additionally, unlike the case of platooning involving Ahmed bodies, the trailing model drag does not return to an isolated state value at a two car-length separation. However, the impact of the resolution of the far wake of a detailed DrivAer model, and its implication on the CFD characterization of vehicle interaction aerodynamics need further investigations.


Symmetry ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 1249 ◽  
Author(s):  
David Radice

Magnetohydrodynamic (MHD) turbulence in neutron star (NS) merger remnants can impact their evolution and multi-messenger signatures, complicating the interpretation of present and future observations. Due to the high Reynolds numbers and the large computational costs of numerical relativity simulations, resolving all the relevant scales of the turbulence will be impossible for the foreseeable future. Here, we adopt a method to include subgrid-scale turbulence in moderate resolution simulations by extending the large-eddy simulation (LES) method to general relativity (GR). We calibrate our subgrid turbulence model with results from very-high-resolution GRMHD simulations, and we use it to perform NS merger simulations and study the impact of turbulence. We find that turbulence has a quantitative, but not qualitative, impact on the evolution of NS merger remnants, on their gravitational wave signatures, and on the outflows generated in binary NS mergers. Our approach provides a viable path to quantify uncertainties due to turbulence in NS mergers.


2019 ◽  
Vol 64 (9) ◽  
pp. 1627-1642 ◽  
Author(s):  
Maxim Bulat ◽  
Pascale M. Biron ◽  
Jay R. W. Lacey ◽  
Morgan Botrel ◽  
Christiane Hudon ◽  
...  

2000 ◽  
Vol 123 (2) ◽  
pp. 409-417 ◽  
Author(s):  
Bjo¨rn Gru¨ber ◽  
Volker Carstens

A parametric study which investigates the influence of viscous effects on the damping behavior of vibrating compressor cascades is presented here. To demonstrate the dependence of unsteady aerodynamic forces on the flow viscosity, a computational study was performed for a transonic compressor cascade of which the blades underwent tuned pitching oscillations while the flow conditions extended from fully subsonic to highly transonic flow. Additionally, the reduced frequency and Reynolds number were varied. In order to check the linear behavior of the aerodynamic forces, all calculations were carried out for three different oscillation amplitudes. Comparisons with inviscid Euler results helped identify the influence of viscous effects. The computations were performed with a Navier-Stokes code, the basic features of which are the use of an AUSM upwind scheme, an implicit time integration, and the implementation of the Baldwin-Lomax turbulence model. In order to demonstrate the possibility of this code to correctly predict the unsteady behavior of strong shock-boundary layer interactions, the experiment of Yamamoto and Tanida on a self-induced shock oscillation due to shock-boundary layer interaction was calculated. A significant improvement in the prediction of the shock amplitude was achieved by a slight modification of the Baldwin Lomax turbulence model. An important result of the presented compressor cascade investigations is that viscous effects may cause a significant change in the aerodynamic damping. This behavior is demonstrated by two cases in which an Euler calculation predicts a damped oscillation whereas a Navier-Stokes computation leads to an excited vibration. It was found that the reason for these contrary results are shock-boundary-layer interactions which dramatically change the aerodynamic damping.


2010 ◽  
Vol 4 (2) ◽  
Author(s):  
Adrian Tentner ◽  
Georgy Guria ◽  
Andrey Ioilev ◽  
Simon Lo ◽  
Andros Onoufriou ◽  
...  

An international collaborative effort to develop a computational fluid dynamics (CFD) model of the human cardiovascular system (HCVS) has been initiated in 2008. The HCVS model is designed to describe (a) the blood flow hydrodynamics and associated heat transport phenomena, (b) the blood flow interactions with the essential organs, and (c) the vessel blockage formation associated with atherosclerosis and thrombosis. The CFD-HCVS model is being developed as a new specialized software module using as a foundation the CFD code, STAR-CD, that is developed and distributed by CD-adapco, Ltd., a member of the project team. The CFD-HCVS module includes the following components and capabilities. (1) A simplified 3D coarse mesh CFD model of the HCVS, which allows the simulation of hemodynamic transient phenomena. The circulatory system model is closed with porous-media flow components having a hydraulic resistance equivalent to the lumped flow resistance of the smaller vessels, including microcirculation. Both hydrodynamic and thermodynamic phenomena are described, allowing the study of blood flow transients in the presence of temperature changes. (2) Simplified zero-dimensional models of the essential organs (e.g., heart, kidneys, brain, liver, etc.) describing the time-dependent consumption or production of various blood components of interest. The organ models exchange information with the CFD system model through interfaces designed to allow their replacement, in the future, with more complex 3D organ models. (3) Selected sections of the circulatory system can be replaced by realistic 3 fine mesh vessel models allowing the detailed study of the 3D blood flow field and the vascular geometry changes due to blockage formation. (4) Models of local blockage formation due to atherosclerosis and thrombosis. Three HCVS models of increasing complexity have been designed. These models contain 27 vessels, 113 vessels, and 395 vessels. The initial CFD-HCVS model development is based on the medium HCVS model with 113 vessels. A closed circuit CFD model describing the major vessels and containing 0D models of the heart and kidneys has been developed. The CFD-HCVS model includes porous-media models describing the blood flow in the smaller vessels and capillaries. Initial simulations show that the calculated blood flow rates in the vessels modeled are in reasonably good agreement with the corresponding physiological values. A simplified model of thrombosis has also been developed. Current development efforts are focused on the addition of new vessels and 0D organ models and the development of atherosclerosis models. The HCVS model provides a flexible and expandable modeling framework that will allow the researchers from universities, research hospitals and the medical industry to study the impact of a wide range of phenomena associated with diseases of the circulatory system and will help them develop new diagnostics and treatments.


Author(s):  
Eduardo Aoun Tannuri ◽  
Carlos Hakio Fucatu ◽  
Bruno Devoraes Rossin ◽  
Renata Cristina B. Montagnini ◽  
Marcos Donato Ferreira

The effects of hydrodynamic and aerodynamic interactions on a typical shuttle tanker (ST), when offloading a FPSO moored in Spread Mooring System (SMS) configuration are being studied in an extensive research project conducted at the University of Sa˜o Paulo, in collaboration with Petrobras. The numerical models will be incorporated in the simulators in order to evaluate the impact of such effects on the dynamics of the ST and on its DP System power requirement. Present paper focuses the wind shielding effect, since current and wave wake effects were already treated in previous works (Illuminatti et al., 2009; Queiroz Filho et al., 2009). A detailed CFD model of the FPSO and ST were used to evaluate the horizontal forces and yaw moment induced in the ST by the wind when inside the shadow zone defined by the FPSO. The CFD model was calibrated using wind tunnel measurements of a similar system. Typical tandem configurations were considered for the connection and oil-transfer stages of the operation. The power requirements for each DP thruster were then calculated, considering a thrust allocation algorithm. The comparisons with the stand-alone ST configuration indicated that the wind shielding effect is important concerning DP power. Besides, it is proposed a simplified model for wind forces and moment in the ST, considering the wind velocity field in the wake of the FPSO (CFD calculation). The procedure is based on report [7] where the wind force is evaluated through de summation of forces and moment in the stern, middle and bow parts of the ST. Such procedure has the advantage of requiring only one CFD calculation (for obtaining the velocity field downstream FPSO).


Sign in / Sign up

Export Citation Format

Share Document