Holocene environmental changes of the Songji lagoon, South Korea, and its linkage to sea level and ENSO changes

2019 ◽  
Vol 503 ◽  
pp. 32-40 ◽  
Author(s):  
Bing Song ◽  
Sangheon Yi ◽  
Wook-Hyun Nahm ◽  
Jin-Young Lee ◽  
Zhongyong Yang ◽  
...  
The Holocene ◽  
2018 ◽  
Vol 29 (1) ◽  
pp. 26-44 ◽  
Author(s):  
Manel Leira ◽  
Maria C Freitas ◽  
Tania Ferreira ◽  
Anabela Cruces ◽  
Simon Connor ◽  
...  

We examine the Holocene environmental changes in a wet dune slack of the Portuguese coast, Poço do Barbarroxa de Baixo. Lithology, organic matter, biological proxies and high-resolution chronology provide estimations of sediment accumulation rates and changes in environmental conditions in relation to sea-level change and climate variability during the Holocene. Results show that the wet dune slack was formed 7.5 cal. ka BP, contemporaneous with the last stages of the rapid sea-level rise. This depositional environment formed under frequent freshwater flooding and water ponding that allowed the development and post-mortem accumulation of abundant plant remains. The wetland evolved into mostly palustrine conditions over the next 2000 years, until a phase of stabilization in relative sea-level rise, when sedimentation rates slowed down to 0.04 mm yr−1, between 5.3 and 2.5 cal. ka BP. Later, about 0.8 cal. ka BP, high-energy events, likely due to enhanced storminess and more frequent onshore winds, caused the collapse of the foredune above the wetlands’ seaward margin. The delicate balance between hydrology (controlled by sea-level rise and climate change), sediment supply and storminess modulates the habitat’s resilience and ecological stability. This underpins the relevance of integrating past records in coastal wet dune slacks management in a scenario of constant adaptation processes.


Insects ◽  
2018 ◽  
Vol 9 (4) ◽  
pp. 152 ◽  
Author(s):  
Da-Yeong Lee ◽  
Dae-Seong Lee ◽  
Mi-Jung Bae ◽  
Soon-Jin Hwang ◽  
Seong-Yu Noh ◽  
...  

Odonata species are sensitive to environmental changes, particularly those caused by humans, and provide valuable ecosystem services as intermediate predators in food webs. We aimed: (i) to investigate the distribution patterns of Odonata in streams on a nationwide scale across South Korea; (ii) to evaluate the relationships between the distribution patterns of odonates and their environmental conditions; and (iii) to identify indicator species and the most significant environmental factors affecting their distributions. Samples were collected from 965 sampling sites in streams across South Korea. We also measured 34 environmental variables grouped into six categories: geography, meteorology, land use, substrate composition, hydrology, and physicochemistry. A total of 83 taxa belonging to 10 families of Odonata were recorded in the dataset. Among them, eight species displayed high abundances and incidences. Self-organizing map (SOM) classified sampling sites into seven clusters (A–G) which could be divided into two distinct groups (A–C and D–G) according to the similarities of their odonate assemblages. Clusters A–C were characterized by members of the suborder Anisoptera, whereas clusters D–G were characterized by the suborder Zygoptera. Non-metric multidimensional scaling (NMDS) identified forest (%), altitude, and cobble (%) in substrata as the most influential environmental factors determining odonate assemblage compositions. Our results emphasize the importance of habitat heterogeneity by demonstrating its effect on odonate assemblages.


2020 ◽  
Author(s):  
P.C. Pretorius ◽  
T.B. Hoareau

AbstractMolecular clock calibration is central in population genetics as it provides an accurate inference of demographic history, whereby helping with the identification of driving factors of population changes in an ecosystem. This is particularly important for coral reef species that are seriously threatened globally and in need of conservation. Biogeographic events and fossils are the main source of calibration, but these are known to overestimate timing and parameters at population level, which leads to a disconnection between environmental changes and inferred reconstructions. Here, we propose the Last Glacial Maximum (LGM) calibration that is based on the assumptions that reef species went through a bottleneck during the LGM, which was followed by an early yet marginal increase in population size. We validated the LGM calibration using simulations and genetic inferences based on Extended Bayesian Skyline Plots. Applying it to mitochondrial sequence data of crown-of-thorns starfish Acanthaster spp., we obtained mutation rates that were higher than phylogenetically based calibrations and varied among populations. The timing of the greatest increase in population size differed slightly among populations, but all started between 10 and 20 kya. Using a curve-fitting method, we showed that Acanthaster populations were more influenced by sea-level changes in the Indian Ocean and by reef development in the Pacific Ocean. Our results illustrate that the LGM calibration is robust and can probably provide accurate demographic inferences in many reef species. Application of this calibration has the potential to help identify population drivers that are central for the conservation and management of these threatened ecosystems.


1987 ◽  
Vol 35 ◽  
pp. 149-159
Author(s):  
T. N. Koren'

On the basis of biostratigraphic data known at present some preliminary attempts are made to evaluate graptolite dynamics, that is changes in graptolite diversity in time and space within pelagic fades of Si­lurian and Early Devonian age. For the comparative studies of diversity fluctuations versus some major environmental changes a standard graptolite zonation is used. Several critical and more or less well stu­died stratigraphical intervals are chosen; among them the Ordovician/Silurian, Sheinwoodian/Gorstian and Gorstian/Ludfordian boundary beds. For each level the most complete reference sections are analy­zed. Special attention is given to the graptolite extinction, specification and radiation events within these time intervals. They might have been partly connected with or influenced by the environmental factors as a result of eustatic sea-level and climate changes, alteration of anoxic conditions, migration of carbonate sedimentation in pelagic direction, and other globally detectable events. The graptolite evolution during the time of monograptid existence can be subdivided into three phases using the comparison of the ampli­tude of the extinction-origination events and repeatability of the synphasic cycles.


2020 ◽  
Author(s):  
Justine Briard ◽  
Marc de Rafélis ◽  
Emmanuelle Vennin ◽  
Mathieu Daëron ◽  
Valérie Chavagnac ◽  
...  

<p>The Cenozoic period encompasses the last transition from the “greenhouse” climate of the late Early Eocene (~50 Ma) to our modern “icehouse” climate with its much lower CO<sub>2</sub> levels, significant polar glaciation and major sea level drop. The Eocene-Oligocene transition (EOT), that marks the first major ice-sheet build-up on Antarctica, has been extensively studied as it represents the entrance into an icehouse mode. Identification of this major step of Antarctic ice-sheet build-up strongly relies on δ<sup>18</sup>O and Mg/Ca benthic foraminifera records from ODP / DSDP sites. By contrast, few records currently exist from coastal environments despite the presence of abundant fossil archives, like bivalve shells. Yet palaeoenvironmental records from these peculiar coastal sites could bring information on how they react to global climate changes and help to further understand the behavior of our climate system. In this study, we applied a multi-proxy strategy coupling δ<sup>18</sup>O, δ<sup>13</sup>C, clumped isotopes (Δ<sub>47</sub>), strontium isotopes (<sup>87</sup>Sr/<sup>86</sup>Sr) analyses on aragonitic and calcitic bivalves and sediments recovered from the Isle of Wight (London-Paris Basin, Northeastern Atlantic Ocean) to provide additional constrain on environmental changes in this region across the Eocene-Oligocene Transition (~37.8–33 Ma).</p><p>Our new coupled δ<sup>18</sup>O and Δ<sub>47 </sub>dataset highlights a marked decrease in local seawater temperatures (~ 8°C) coupled to a drop in local seawater δ<sup>18</sup>O, likely linked to the sea level drop associated with ice-cap formation and an evolution toward more proximal, brackish environment in this region (that is apparent from sediment facies evolution). We estimate the salinity decrease recorded at the local scale from the Eocene to the Oligocene as reaching about 6 PSU, from 31 to 25 PSU. Strontium isotope analyses of the bivalves support this interpretation, showing values close to that of seawater up to the EOT but a marked deviation from contemporaneous global seawater <sup>87</sup>Sr/<sup>86</sup>Sr values toward more radiogenic values afterward. This positive deviation is in agreement with an evolution toward more proximal environments, subjected to larger freshwater inputs.</p>


2019 ◽  
Vol 49 (3) ◽  
pp. 259-274
Author(s):  
Jennifer L. Frail-Gauthier ◽  
Peta J. Mudie ◽  
Alastair G. B. Simpson ◽  
David B. Scott

Abstract Agglutinated foraminifera dominate in temperate salt marsh sediment, making them key indicators for monitoring sea level and environmental changes. Little is known about the biology of these benthic foraminifera because of difficulties in distinguishing live from dead specimens in laboratory cultures. We present data from 10 years of laboratory experiments using comparisons of the agglutinant trochamminids Trochammina inflata and Entzia macrescens and the miliolid Miliammina fusca with the calcareous rotalids Helenina anderseni and Elphidium williamsoni. Specimens were taken from a laboratory mesocosm representing Chezzetcook Inlet, a cool-temperate salt marsh in eastern Canada. We determined culture requirements for the agglutinated foraminifera in Petri dishes over 10–12 week periods. Five inexpensive, non-terminal ways of identifying live organisms were developed: spatial movement, detritus-gathering, attachment, clustering, and test opacity. Comparison with rose Bengal staining showed <10% diversion for calcareous species and T. inflata but M. fusca was over-counted by >30%. Terminal chambers of Trochammina inflata were examined by transmission electron microscopy to visualise food consumption and identify food in digestive vacuoles, both in specimens from mesocosm and in culture. Bacteria and unidentified detritus in the vacuoles establish that this agglutinated species is a saprophagous and bacterivorous detritivore. The adhesive secretions by these species apparently help them gather and possibly farm food while being relatively immobile in the sediments. Our observations of movement and feeding orientation in the agglutinants suggest links between form and function that underscore their value as ultra high resolution sea-level proxies. Mesocosm biomass and abundance counts show that foraminifera represent >50% of the meiofaunal biomass, emphasising their importance in the food web and energy-flow dynamics of temperate salt marsh systems.


2020 ◽  
Vol 24 (4) ◽  
pp. 2003-2016 ◽  
Author(s):  
Tobias Sauter

Abstract. Patagonia is thought to be one of the wettest regions on Earth, although available regional precipitation estimates vary considerably. This uncertainty complicates understanding and quantifying the observed environmental changes, such as glacier recession, biodiversity decline in fjord ecosystems and enhanced net primary production. The Patagonian Icefields, for example, are one of the largest contributors to sea-level rise outside the polar regions, and robust hydroclimatic projections are needed to understand and quantify current and future mass changes. The reported projections of precipitation from numerical modelling studies tend to overestimate those from in situ determinations, and the plausibility of these numbers has never been carefully scrutinized, despite the significance of this topic to our understanding of observed environmental changes. Here I use simple physical arguments and a linear model to test the plausibility of the current precipitation estimates and its impact on the Patagonian Icefields. The results show that environmental conditions required to sustain a mean precipitation amount exceeding 6.09±0.64 m yr−1 are untenable according to the regional moisture flux. The revised precipitation values imply a significant reduction in the surface mass balance of the Patagonian Icefields compared to previously reported values. This yields a new perspective on the response of Patagonia's glaciers to climate change and their sea-level contribution and might also help reduce uncertainties in the change of other precipitation-driven environmental phenomena.


Sign in / Sign up

Export Citation Format

Share Document