The equatorial Indian Ocean upper water-column structure influenced by cross-basinal water exchange over the last ∼40000 years

Author(s):  
Ramanand Yadav ◽  
Sushant S. Naik ◽  
Jayu Narvekar
MAUSAM ◽  
2021 ◽  
Vol 42 (2) ◽  
pp. 131-138
Author(s):  
R.R. RAO ◽  
K. D. K. M. SARMA ◽  
BASIL MATHEW

The hydrographic and BT data sets collected in the upper 200 m water column along three zonal transects (2°N, equator and 2°S) in the equatorial Indian Ocean (between 70oE and 90OE) made by USSR ships during the field observational programme of Monsoon-77 (end May/early June 1977) showed prominent eastward depression of thermocline in association with the surface easterly equatorial jet. In the central indian. Ocean, the mixed layer cooling and deepening rates were weak with the. Onset and sway of the summer monsoon over a two month period from end May 1977, but relatively significant changes were noticed in the salinity of the upper 200 m water column. In this region, on a synoptic scale a mild increase in SST is in accor4ance with the net surface heat gain during the last week of July 1977.  


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Wei Shi ◽  
Menghua Wang

AbstractThe 2019 positive Indian Ocean Dipole (IOD) event in the boreal autumn was the most serious IOD event of the century with reports of significant sea surface temperature (SST) changes in the east and west equatorial Indian Ocean. Observations of the Visible Infrared Imaging Radiometer Suite (VIIRS) onboard the Suomi National Polar-orbiting Partnership (SNPP) between 2012 and 2020 are used to study the significant biological dipole response that occurred in the equatorial Indian Ocean following the 2019 positive IOD event. For the first time, we propose, identify, characterize, and quantify the biological IOD. The 2019 positive IOD event led to anomalous biological activity in both the east IOD zone and west IOD zone. The average chlorophyll-a (Chl-a) concentration reached over ~ 0.5 mg m−3 in 2019 in comparison to the climatology Chl-a of ~ 0.3 mg m−3 in the east IOD zone. In the west IOD zone, the biological activity was significantly depressed. The depressed Chl-a lasted until May 2020. The anomalous ocean biological activity in the east IOD zone was attributed to the advection of the higher-nutrient surface water due to enhanced upwelling. On the other hand, the dampened ocean biological activity in the west IOD zone was attributed to the stronger convergence of the surface waters than that in a normal year.


2020 ◽  
Vol 125 (6) ◽  
Author(s):  
Ebenezer S. Nyadjro ◽  
Adam V. Rydbeck ◽  
Tommy G. Jensen ◽  
James G. Richman ◽  
Jay F. Shriver

2006 ◽  
Vol 36 (5) ◽  
pp. 827-846 ◽  
Author(s):  
Toru Miyama ◽  
Julian P. McCreary ◽  
Debasis Sengupta ◽  
Retish Senan

Abstract Variability of the wind field over the equatorial Indian Ocean is spread throughout the intraseasonal (10–60 day) band. In contrast, variability of the near-surface υ field in the eastern, equatorial ocean is concentrated at biweekly frequencies and is largely composed of Yanai waves. The excitation of this biweekly variability is investigated using an oceanic GCM and both analytic and numerical versions of a linear, continuously stratified (LCS) model in which solutions are represented as expansions in baroclinic modes. Solutions are forced by Quick Scatterometer (QuikSCAT) winds (the model control runs) and by idealized winds having the form of a propagating wave with frequency σ and wavenumber kw. The GCM and LCS control runs are remarkably similar in the biweekly band, indicating that the dynamics of biweekly variability are fundamentally linear and wind driven. The biweekly response is composed of local (nonradiating) and remote (Yanai wave) parts, with the former spread roughly uniformly along the equator and the latter strengthening to the east. Test runs to the numerical models separately forced by the τx and τy components of the QuikSCAT winds demonstrate that both forcings contribute to the biweekly signal, the response forced by τy being somewhat stronger. Without mixing, the analytic spectrum for Yanai waves forced by idealized winds has a narrowband (resonant) response for each baroclinic mode: Spectral peaks occur whenever the wavenumber of the Yanai wave for mode n is sufficiently close to kw and they shift from biweekly to lower frequencies with increasing modenumber n. With mixing, the higher-order modes are damped so that the largest ocean response is restricted to Yanai waves in the biweekly band. Thus, in the LCS model, resonance and mixing act together to account for the ocean's favoring the biweekly band. Because of the GCM's complexity, it cannot be confirmed that vertical mixing also damps its higher-order modes; other possible processes are nonlinear interactions with near-surface currents, and the model's low vertical resolution below the thermocline. Test runs to the LCS model show that Yanai waves from several modes superpose to form a beam (wave packet) that carries energy downward as well as eastward. Reflections of such beams from the near-surface pycnocline and bottom act to maintain near-surface energy levels, accounting for the eastward intensification of the near-surface, equatorial υ field in the control runs.


2021 ◽  
pp. 1-50
Author(s):  
Ge Song ◽  
Bohua Huang ◽  
Rongcai Ren ◽  
Zeng-Zhen Hu

AbstractIn this paper, the interannual variability of upper-ocean temperature in the equatorial Indian Ocean (IO) and its basin-wide connections are investigated using 58-year (1958-2015) comprehensive monthly mean ocean reanalysis data. Three leading modes of an empirical orthogonal function (EOF) analysis dominate the variability of upper-ocean temperature in the equatorial IO in a wide range of timescales. A coherent interannual band within the first two EOF modes identifies an oscillation between the zonally tilting thermocline across the equatorial IO in its peak phases and basin-wide displacement of the equatorial thermocline in its transitional phases. Consistent with the recharge oscillation paradigm, this oscillation is inherent of the equatorial IO with a quasi-periodicity around 15 months, in which the wind-induced off-equatorial Rossby waves near 5°S-10°S provide the phase-transition mechanism. This intrinsic IO oscillation provides the biennial component in the observed IOD variations. The third leading mode shows a nonlinear long-term trend of the upper-ocean temperature, including the near-surface warming along the equatorial Indian Ocean, accompanied by cooling trend in the lower thermocline originating further south. Such vertical contrary trends may lead to an enhanced stratification in the equatorial IO.


Sign in / Sign up

Export Citation Format

Share Document