An adaptive trajectory planning algorithm for robotic belt grinding of blade leading and trailing edges based on material removal profile model

2020 ◽  
Vol 66 ◽  
pp. 101987 ◽  
Author(s):  
Yuanjian Lv ◽  
Zhen Peng ◽  
Chao Qu ◽  
Dahu Zhu
2014 ◽  
Vol 18 (1) ◽  
pp. 15-30 ◽  
Author(s):  
Shuihua Wu ◽  
Kazem Kazerounian ◽  
Zhongxue Gan ◽  
Yunquan Sun

2021 ◽  
Vol 13 (4) ◽  
pp. 168781402110027
Author(s):  
Jianqiang Wang ◽  
Yanmin Zhang ◽  
Xintong Liu

To realize efficient palletizing robot trajectory planning and ensure ultimate robot control system universality and extensibility, the B-spline trajectory planning algorithm is used to establish a palletizing robot control system and the system is tested and analyzed. Simultaneously, to improve trajectory planning speeds, R control trajectory planning is used. Through improved algorithm design, a trajectory interpolation algorithm is established. The robot control system is based on R-dominated multi-objective trajectory planning. System stack function testing and system accuracy testing are conducted in a production environment. During palletizing function testing, the system’s single-step code packet time is stable at approximately 5.8 s and the average evolutionary algebra for each layer ranges between 32.49 and 45.66, which can save trajectory planning time. During system accuracy testing, the palletizing robot system’s repeated positioning accuracy is tested. The repeated positioning accuracy error is currently 10−1 mm and is mainly caused by friction and the machining process. By studying the control system of a four-degrees-of-freedom (4-DOF) palletizing robot based on the trajectory planning algorithm, the design predictions and effects are realized, thus providing a reference for more efficient future palletizing robot design. Although the working process still has some shortcomings, the research has major practical significance.


Author(s):  
Y. P. Chien ◽  
Qing Xue

An efficient locally minimum-time trajectory planning algorithm for coordinately operating multiple robots is introduced. The task of the robots is to carry a common rigid object from an initial position to a final position along a given path in three-dimensional workspace in minimum time. The number of robots in the system is arbitrary. In the proposed algorithm, the desired motion of the common object carried by the robots is used as the key to planning of the trajectories of all the non-redundant robots involved. The search method is used in the trajectory planning. The planned robot trajectories satisfy the joint velocity, acceleration and torque constraints as well as the path constraints. The other constraints such as collision-free constraints, can be easily incorporated into the trajectory planning in future research.


Sign in / Sign up

Export Citation Format

Share Document