A Paradigm Shift of Energy Sources: Critical Review on Competitive Dynamics of Solar PV Industry in Indonesia

Author(s):  
Nareswari Sumarsono ◽  
Sari Wahyuni ◽  
Lily Sudhartio
2021 ◽  
pp. 0309524X2110241
Author(s):  
Nindra Sekhar ◽  
Natarajan Kumaresan

To overcome the difficulties of extending the main power grid to isolated locations, this paper proposes the local installation of a combination of three renewable energy sources, namely, a wind driven DFIG, a solar PV unit, a biogas driven squirrel-cage induction generator (SCIG), and an energy storage battery system. In this configuration one bi-directional SPWM inverter at the rotor side of the DFIG controls the voltage and frequency, to maintain them constant on its stator side, which feeds the load. The PV-battery also supplies the load, through another inverter and a hysteresis controller. Appropriately adding a capacitor bank and a DSTATCOM has also been considered, to share the reactive power requirement of the system. Performance of various modes of operation of this coordinated scheme has been studied through simulation. All the results and relevant waveforms are presented and discussed to validate the successful working of the proposed system.


2017 ◽  
Vol 7 (1) ◽  
pp. 141-152 ◽  
Author(s):  
Ernesto Amores ◽  
Jesús Rodríguez ◽  
José Oviedo ◽  
Antonio de Lucas-Consuegra

AbstractAlkaline water electrolysis powered by renewable energy sources is one of the most promising strategies for environmentally friendly hydrogen production. However, wind and solar energy sources are highly dependent on weather conditions. As a result, power fluctuations affect the electrolyzer and cause several negative effects. Considering these limiting effects which reduce the water electrolysis efficiency, a novel operation strategy is proposed in this study. It is based on pumping the electrolyte according to the current density supplied by a solar PV module, in order to achieve the suitable fluid dynamics conditions in an electrolysis cell. To this aim, a mathematical model including the influence of electrode-membrane distance, temperature and electrolyte flow rate has been developed and used as optimization tool. The obtained results confirm the convenience of the selected strategy, especially when the electrolyzer is powered by renewable energies.


2021 ◽  
Vol 850 (1) ◽  
pp. 012008
Author(s):  
N Rajamurugu

Abstract Renewable energy sources become suitable valid options to reduce the dependency on fossil fuels or petroleum products. The International Renewable Energy Agency reports that the world will harvest 40% of energy from renewable energy sources by 2030. Conventional technologies such as solar PV technology, consumes higher capital per unit (kWh) of electricity generation cost significantly higher than the traditional sources. Hence, solar chimney power generation system can be suitable option for generating low cost energy. Solar chimneys are developed and tested by different researchers in enhancing the performance of the system. Studies on the geometric modifications of the collector, and chimney are limited. The aim of this paper is to analyse the experimental data obtained from a divergent solar chimney. Experimentation is carried under sunlight in an open atmosphere. The airflow rates in the chimneys are tested under different collector outlet height. The experimental results showed that a chimney with higher collector openings was performed well than other models. The computational analysis is also carried out using ANSYS Fluent software package which shows that the collector opening of 2.5m is recommended for higher high mass flow rate and system efficiency.


2019 ◽  
Vol 27 (1) ◽  
pp. 17-30
Author(s):  
Nataša Rupčić

Purpose The purpose of this paper is to discuss the possibilities of transcending individual, organizational and social problems through the prism of presence as suggested by Senge et al. (2012). Design/methodology/approach The paper is based on the critical review of previous contributions. Findings The idea of a learning organization seems romantic and elusive, as well as difficult to implement, especially when the definition by Senge (1990) is considered. At the same time, organizational and social complexity is increasing and resulting in numerous difficult or wicked problems. To reach integrative and transcending solutions, a change in perception and surrender to presence is key. Research limitations/implications Conclusions provided in the paper could benefit from further practice to corroborate the findings. Practical implications Suggestions for practitioners have been provided on how to solve personal, organizational and social problems on the basis of the paradigm shift and the shift in perception. Originality/value In this paper, the individual, organizational and social dimensions in terms of their intricacies are considered and solutions are offered that could simultaneously solve wicked problems on all three levels.


2019 ◽  
Vol 9 (9) ◽  
pp. 1844 ◽  
Author(s):  
Jesús Ferrero Bermejo ◽  
Juan F. Gómez Fernández ◽  
Fernando Olivencia Polo ◽  
Adolfo Crespo Márquez

The generation of energy from renewable sources is subjected to very dynamic changes in environmental parameters and asset operating conditions. This is a very relevant issue to be considered when developing reliability studies, modeling asset degradation and projecting renewable energy production. To that end, Artificial Neural Network (ANN) models have proven to be a very interesting tool, and there are many relevant and interesting contributions using ANN models, with different purposes, but somehow related to real-time estimation of asset reliability and energy generation. This document provides a precise review of the literature related to the use of ANN when predicting behaviors in energy production for the referred renewable energy sources. Special attention is paid to describe the scope of the different case studies, the specific approaches that were used over time, and the main variables that were considered. Among all contributions, this paper highlights those incorporating intelligence to anticipate reliability problems and to develop ad-hoc advanced maintenance policies. The purpose is to offer the readers an overall picture per energy source, estimating the significance that this tool has achieved over the last years, and identifying the potential of these techniques for future dependability analysis.


Energies ◽  
2019 ◽  
Vol 12 (22) ◽  
pp. 4240 ◽  
Author(s):  
Khairy Sayed ◽  
Ahmed G. Abo-Khalil ◽  
Ali S. Alghamdi

This paper introduces an energy management and control method for DC microgrid supplying electric vehicles (EV) charging station. An Energy Management System (EMS) is developed to manage and control power flow from renewable energy sources to EVs through DC microgrid. An integrated approach for controlling DC microgrid based charging station powered by intermittent renewable energies. A wind turbine (WT) and solar photovoltaic (PV) arrays are integrated into the studied DC microgrid to replace energy from fossil fuel and decrease pollution from carbon emissions. Due to the intermittency of solar and wind generation, the output powers of PV and WT are not guaranteed. For this reason, the capacities of WT, solar PV panels, and the battery system are considered decision parameters to be optimized. The optimized design of the renewable energy system is done to ensure sufficient electricity supply to the EV charging station. Moreover, various renewable energy technologies for supplying EV charging stations to improve their performance are investigated. To evaluate the performance of the used control strategies, simulation is carried out in MATLAB/SIMULINK.


Author(s):  
Nicola Tagliafierro

Enel X is leading the transition toward a sustainable business model, with the circular economy as an important pillar. Using renewable energy sources and materials, extending product life cycles, creating sharing platforms, reuse and regeneration, rethinking products as services. The principles of the circular economy have become essential, considering the paradigm shift overturning the traditional linear economic model. Enel X was one of the first businesses to offer products on the market that concretely apply the five business models of the circular economy and reconsider the entire value chain from a sustainability perspective. This approach is characterized by two core principles: 1.  the first, addressed internally, focuses on the business’s product portfolio, which ranges from “measuring” circularity to identifying solutions for improvement; 2.  the second is directed toward the outside, and especially toward industrial customers and public administrations or end customers, with the goal of evaluating their level of “circularity” and helping them outline a roadmap to circularity.


Sign in / Sign up

Export Citation Format

Share Document