Multiscale modeling and performance analysis of evacuated tube collectors for solar water heaters using diffuse flat reflector

2016 ◽  
Vol 86 ◽  
pp. 360-374 ◽  
Author(s):  
Dia Milani ◽  
Ali Abbas
Author(s):  
Michele Pinelli ◽  
Alessio Suman ◽  
Michele Vanti

This paper evaluates the characteristics of water-in-glass evacuated tube solar water heaters including assessment of the circulation rate through single ended tubes. A numerical model of the fluid flow inside a single ended evacuated tube has been developed assuming no interaction between adjacent tubes in the collector array. The numerical model is firstly validated by means of literature data. Then, the performance in terms of circulation mass flow rate in different heat flux condition and at different inclination angle of the collector are evaluated. Moreover, a sensitivity analysis on the effect of the assumptions of different reference parameters and of the choice of the values of the fluid thermophysical properties is carried out and a quantitative analysis of the expected uncertainty is presented. Finally, an extension of previous literature correlations in terms of non-dimensional Reynolds and Rayleigh numbers is proposed. Regarding heating boundary conditions, the circumferential heat distribution was found to be an important parameter influencing the flow structure and circulation rate through the tube.


2014 ◽  
Vol 592-594 ◽  
pp. 2355-2359
Author(s):  
Narasimhe Gowda ◽  
B. Putta Bore Gowda ◽  
R. Chandrashekar ◽  
G. Ugrasen ◽  
R. Keshavamurthy

Now-a-days evacuated tubes solar water heaters are increasingly use in South India because of good thermal efficiency and high water temperature could be achievable as compared to flat plate solar collectors. Low manufacturing and maintenance cost also attract people to go for evacuated tube solar water heaters. This paper reports experimental results of two types of evacuated tube solar water heaters. To evaluate the performance of evacuated tube solar water heater, single-phase forced system and two-phase closed forced systems were considered. In two-phase closed system sunflower oil was used as working fluid to heat water. Throughout the study two-phase closed system shows better performance compared to single-phase open collector system and their efficiency almost 10 to 12% higher. But, because of high initial cost of two-phase system, the pay back periods of both collector systems is almost same. In two phased closed system higher temperature of water could be achieved, which is very useful to operate advanced system.


Solar Energy ◽  
2004 ◽  
Vol 76 (1-3) ◽  
pp. 135-140 ◽  
Author(s):  
G.L. Morrison ◽  
I. Budihardjo ◽  
M. Behnia

2016 ◽  
Vol 855 ◽  
pp. 114-118 ◽  
Author(s):  
Sukruedee Sukchai ◽  
Yodthong Mensin ◽  
Wikarn Wansungnern

In recent years, solar water heating technology has got the major importance in water heating applications. For the efficient and effective working of solar water heaters, storage of the hot water is the main issue in this water heating technologies. This paper mainly presents the exergy and efficiency comparison between the solar flat plate water heater and evacuated tube water heater. A five level stratified thermal storage tank is designed and developed for this analysis. At each level of the tank, temperature of the water is collected for each one hour interval from 9:00 to 16:00 hours in both cases and the overall exergy and efficiency of the two water heaters were calculated. The average efficiency of all the levels for flat plate and evacuated tube collectors are 7.91% and 8.20% respectively. The overall system efficiency is obtained as 39.54% for flat plate and 41.00% for evacuated tube solar collector. At each level exergy is calculate for both systems and the average exergy of all the levels for flat plate collector is 4.243 kW and for evacuated tube solar collector is 4.371 kW.


2013 ◽  
Vol 860-863 ◽  
pp. 81-87
Author(s):  
Yu Qin Yang ◽  
Run Sheng Tang

In the present specification of domestic solar water heating systems (GB/T19141), regardless of the type of collectors used in the systems, Q17, the daily heat gain corresponding to the daily radiation of 17MJ/m2 on the collector surface, is a key indication to rate the thermal performance of a domestic solar water heaters. In this work, an attempt was made to investigate effect of the distance between two adjacent tubes in solar tube collectors of a water-in-glass evacuated tube solar water heater (ETSWH) on by theoretical calculations and experimental measurements. Results obtained by simulations and experimental test showed that the tube space had a significant effect on of the ETSWH, the shorter the tube distance, the higher the Q17, thus better the ETSWH performs. However, the actual situation is the case, the shorter the tube distance, the lower the real daily solar gain of the system, thus worse it performs. This implied that Q17 as the indication of thermal performance of the ETSWH is not reasonable, and specifying the tube distance in solar tube collectors of the ETSWH in the technical specification of GB/T19141 is advisable so as to eliminate effect of the tube distance on Q17.


Sign in / Sign up

Export Citation Format

Share Document