An eco-friendly approach for blending of fast-pyrolysis bio-oil in petroleum-derived fuel by controlling ash content of loblolly pine

Author(s):  
Hoyong Kim ◽  
Subash Sriram ◽  
Tiegang Fang ◽  
Stephen Kelley ◽  
Sunkyu Park
Author(s):  
J. Rhett Mayor ◽  
Alexander Williams

Bio-oils were produced within a fast-pyrolysis micro-reactor at 400°C from Loblolly Pine (Pinus Taeda) with varying residence times. This preliminary study has considered two boundary values for the residence time, evaluating the products of the reaction at 20 seconds and 120 seconds. The collected bio-oils were analyzed for their calorific values (LHV) and biomass conversion efficiencies. Heating rates greater than 100°C/s were achieved for the biomass, allowing for isothermal conditions to exist throughout the majority of the reaction despite short residence times. This study shows the effect that reaction duration has on the mass of the bio-oil yield and energy content present for the isothermal fast pyrolysis of Loblolly Pine and evaluates the predictive capabilities of TGA derived Arrhenius coefficients.


2018 ◽  
Vol 61 (2) ◽  
pp. 355-366 ◽  
Author(s):  
Ujjain Pradhan ◽  
Sushil Adhikari ◽  
Oladiran Fasina ◽  
Hyungseok Nam

Abstract. Detrital soil contamination during wood harvesting cannot be avoided without a further cleaning step. The objective of the current study was to determine the effect of Piedmont soil on pinewood pyrolysis products. Ash content was varied at 0.56%, 1.16%, 2.77%, 4.40%, 6.87%, 8.35%, and 15.52% by adding soil to woodchips to mimic the highly soil-contaminated biomass that can be found in biorefineries. This study found that bio-oil yield decreased from 47.1% to 26.3% with an increase in ash content from 0.56% to 15.52%. However, the oxygen content of the bio-oil decreased and the carbon content increased, which led to an increase in heating value from 22.5 to 24.9 MJ kg-1. Inorganics in the soil aided in the catalytic cracking and dehydration reactions for bio-oil formation. A slight increase in the total acid number (106 to 117 mg KOH g-1) and water content (20.72% to 24.99%) was observed with more soil inclusion in the pyrolysis. The effect of soil on biochar O/C and H/C ratios was minimal even though the heating value decreased with an increase in soil content. This study showed that soil (4%wt to 7%wt) in the biomass assisted in deoxygenating the bio-oil and lowered the total mass yield while keeping the total energy yield almost constant. Keywords: Fast pyrolysis, Pinewood, Pinus taeda, Soil, Thermochemical conversion.


Author(s):  
Alessandro Stagni ◽  
Raffaela Calabria ◽  
Alessio Frassoldati ◽  
Alberto Cuoci ◽  
Tiziano Faravelli ◽  
...  

Fuel ◽  
2018 ◽  
Vol 214 ◽  
pp. 569-579 ◽  
Author(s):  
O.D. Mante ◽  
D.C. Dayton ◽  
J.R. Carpenter ◽  
K. Wang ◽  
J.E. Peters

Sign in / Sign up

Export Citation Format

Share Document