Stimulating biolipid production from the novel alga Ankistrodesmus sp. by coupling salt stress and chemical induction

Author(s):  
Yongteng Zhao ◽  
Tengsheng Qiao ◽  
Dan Gu ◽  
Liyan Zhu ◽  
Xuya Yu
2021 ◽  
Vol 22 (23) ◽  
pp. 12986
Author(s):  
Shiying Geng ◽  
Zhaobin Ren ◽  
Lijun Liang ◽  
Yumei Zhang ◽  
Zhaohu Li ◽  
...  

Salt stress negatively affects maize growth and yield. Application of plant growth regulator is an effective way to improve crop salt tolerance, therefore reducing yield loss by salt stress. Here, we used a novel plant growth regulator B2, which is a functional analogue of ABA. With the aim to determine whether B2 alleviates salt stress on maize, we studied its function under hydroponic conditions. When the second leaf was fully developed, it was pretreated with 100 µM ABA, 0.01 µM B2, 0.1 µM B2, and 1 µM B2, independently. After 5 days treatment, NaCl was added into the nutrient solution for salt stress. Our results showed that B2 could enhance salt tolerance in maize, especially when the concentration was 1.0 µMol·L−1. Exogenous application of B2 significantly enhanced root growth, and the root/shoot ratio increased by 7.6% after 6 days treatment under salt stress. Compared with control, the ABA level also decreased by 31% after 6 days, which might have resulted in the root development. What is more, B2 maintained higher photosynthetic capacity in maize leaves under salt stress conditions and increased the activity of antioxidant enzymes and decreased the generation rate of reactive oxygen species by 16.48%. On the other hand, B2 can enhance its water absorption ability by increasing the expression of aquaporin genes ZmPIP1-1 and ZmPIP1-5. In conclusion, the novel plant growth regulator B2 can effectively improve the salt tolerance in maize.


2010 ◽  
Vol 34 (8) ◽  
pp. S33-S33
Author(s):  
Wenchao Ou ◽  
Haifeng Chen ◽  
Yun Zhong ◽  
Benrong Liu ◽  
Keji Chen

Author(s):  
Fabrice B. R. Parmentier ◽  
Pilar Andrés

The presentation of auditory oddball stimuli (novels) among otherwise repeated sounds (standards) triggers a well-identified chain of electrophysiological responses: The detection of acoustic change (mismatch negativity), the involuntary orientation of attention to (P3a) and its reorientation from the novel. Behaviorally, novels reduce performance in an unrelated visual task (novelty distraction). Past studies of the cross-modal capture of attention by acoustic novelty have typically discarded from their analysis the data from the standard trials immediately following a novel, despite some evidence in mono-modal oddball tasks of distraction extending beyond the presentation of deviants/novels (postnovelty distraction). The present study measured novelty and postnovelty distraction and examined the hypothesis that both types of distraction may be underpinned by common frontally-related processes by comparing young and older adults. Our data establish that novels delayed responses not only on the current trial and but also on the subsequent standard trial. Both of these effects increased with age. We argue that both types of distraction relate to the reconfiguration of task-sets and discuss this contention in relation to recent electrophysiological studies.


Sign in / Sign up

Export Citation Format

Share Document