Estimation of recoverable resources used in lithium-ion batteries from portable electronic devices in Japan

2021 ◽  
Vol 175 ◽  
pp. 105884
Author(s):  
Yoshinori Morita ◽  
Yuko Saito ◽  
Toshiaki Yoshioka ◽  
Toshikazu Shiratori
Author(s):  
Binghe Liu ◽  
Huacui Wang ◽  
Yangzheng Cao ◽  
Xin Liu ◽  
Ya Mao ◽  
...  

With the rapid development of electric vehicles (EVs) and electronic devices in current mobile society, the safety issues of lithium-ion batteries (LIBs) have attracted worldwide attention. Mechanical, electrochemical, and thermal...


NANO ◽  
2019 ◽  
Vol 14 (02) ◽  
pp. 1930001 ◽  
Author(s):  
Xiaobei Zang ◽  
Teng Wang ◽  
Zhiyuan Han ◽  
Lingtong Li ◽  
Xin Wu

The upcoming energy crisis and the increasing power requirements of electronic devices have drawn enormous attention to research in the field of energy storage. Owing to compelling electrochemical and mechanical properties, two-dimensional nanomaterials can be used as electrodes on lithium-ion batteries to obtain high capacity and long cycle life. This review summarized the recent advances in the application of 2D nanomaterials on the electrode materials of lithium-ion batteries.


2017 ◽  
Vol 32 (10) ◽  
pp. 1833-1847 ◽  
Author(s):  
Sascha Nowak ◽  
Martin Winter

Being successfully introduced into the market only 25 years ago, lithium ion batteries are already state-of-the-art power sources for portable electronic devices and the most promising candidate for energy storage in large-size batteries. Therefore, elemental analysis of lithium ion batteries (lithium ion batteries), their components and decomposition products is a fast growing topic in the literature.


2020 ◽  
Vol 10 (7) ◽  
pp. 2367 ◽  
Author(s):  
M.M. Cerrillo-Gonzalez ◽  
M. Villen-Guzman ◽  
C. Vereda-Alonso ◽  
C. Gomez-Lahoz ◽  
J.M. Rodriguez-Maroto ◽  
...  

Lithium-ion batteries play an important role in our modern society as the main option to power portable electronic devices and electric vehicles. The growing demand for these batteries encourages the development of more efficient recycling processes, aiming to decrease the environmental impact of the spent batteries and recover their valuable components. In this paper, a combined hydrometallurgical-electrodialytic method is proposed for processing battery waste. In the combined technique, the amount of leaching solution is reduced as acid is generated via electrolysis. At the same time, the use of ion-exchange membranes and the possibility of electroplating allows for a selective separation of the target metals. Experiments were performed using LiCoO2, which is one of the most used cathodes in lithium-ion batteries. First, 0.1 M HCl solution was used in batch extractions to study the kinetics of LiCoO2 dissolution, reaching an extraction of 30% and 69% of cobalt and lithium, respectively. Secondly, hydrometallurgical extraction experiments were carried out in three-compartment electrodialytic cells, enhanced with cation-exchange membranes. Experiments yielded to a selective recovery in the catholyte of 62% of lithium and 33% of cobalt, 80% of the latter electrodeposited at the cathode.


2018 ◽  
Vol 67 ◽  
pp. 03036
Author(s):  
Yuliusman ◽  
Annisaa Nurqomariah ◽  
Radifan Fajaryanto ◽  
Silvia

Batteries waste is found anywhere in the world because most of the electronic devices use batteries to operate them. Batteries that were used for electronic devices nowadays is lithium ion batteries. Lithium ion batteries is one of the rechargeable batteries where it contained heavy metals which is very dangerous for health and environment. However, in order to minimalize the composition before its being disposed many researchers have found a way to recover heavy metals, because it can be useful to reproduce lithium ion batteries in the future. In this research, hydrometallurgical leaching process has been done for recovery cobalt from used lithium ion using hydrogen peroxide as reducing agent and citric acid as a leaching agent by varying citric acid concentration (0-2 M), reaction temperature (50-80°C), and reaction time (5-60 minutes). The result were analyzed by atomic absorption spectroscopy (AAS) and showed that the best operation condition is at concentration 1 M, temperature 80oC with stirring time 60 minutes can recover more than 90% of Cobalt.


RSC Advances ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 1200-1221
Author(s):  
Minkang Wang ◽  
Tianrui Chen ◽  
Tianhao Liao ◽  
Xinglong Zhang ◽  
Bin Zhu ◽  
...  

The development of new electrode materials for lithium-ion batteries (LIBs) has attracted significant attention because commercial anode materials in LIBs, like graphite, may not be able to meet the increasing energy demand of new electronic devices.


RSC Advances ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 5958-5992
Author(s):  
Jahidul Islam ◽  
Faisal I. Chowdhury ◽  
Join Uddin ◽  
Rifat Amin ◽  
Jamal Uddin

With the rapid propagation of flexible electronic devices, flexible lithium-ion batteries are emerging as the most promising energy supplier among all of the energy storage devices due to high energy and power densities with good cycling stability.


2021 ◽  
Author(s):  
Avi Mathur ◽  
Hua Fan ◽  
Vivek Maheshwari

Conventional electronic devices powered by lithium-ion batteries or supercapacitors face a challenge in offering long-term and self-sustaining operations. Self-powered devices based on emerging energy harvesting technologies can help achieve the...


2021 ◽  
Vol 2133 (1) ◽  
pp. 012003
Author(s):  
Xinyu Chen ◽  
Wenhan Yang ◽  
Yu Zhang

Abstract The development of higher-performance rechargeable lithium-ion batteries (LIBs) is critical to the substantial development of electric vehicles and portable electronic devices. The cost of lithium-ion batteries needs to be decreased more and the specific energy as well as recycling degradation rate needs to be enhanced further. Silicon anodes and cobalt-free nickel-rich cathodes are widely regarded as promising materials for the next generation of lithium-ion batteries. This review discusses the current state of research on silicon anode nanomaterials and nickel-rich cathode materials without cobalt.


Batteries ◽  
2019 ◽  
Vol 5 (1) ◽  
pp. 19 ◽  
Author(s):  
Neha Chawla ◽  
Neelam Bharti ◽  
Shailendra Singh

Lithium-ion batteries are the most commonly used source of power for modern electronic devices. However, their safety became a topic of concern after reports of the devices catching fire due to battery failure. Making safer batteries is of utmost importance, and several researchers are trying to modify various aspects in the battery to make it safer without affecting the performance of the battery. Electrolytes are one of the most important parts of the battery since they are responsible for the conduction of ions between the electrodes. In this paper, we discuss the different non-flammable electrolytes that were developed recently for safer lithium-ion battery applications.


Sign in / Sign up

Export Citation Format

Share Document