Anaerobic growth does not support biofilm formation in Escherichia coli K-12

2004 ◽  
Vol 155 (7) ◽  
pp. 514-521 ◽  
Author(s):  
Maritrini Colón-González ◽  
M.Marcela Méndez-Ortiz ◽  
Jorge Membrillo-Hernández
2004 ◽  
Vol 186 (1) ◽  
pp. 192-199 ◽  
Author(s):  
Elizabeth Yohannes ◽  
D. Michael Barnhart ◽  
Joan L. Slonczewski

ABSTRACT During aerobic growth of Escherichia coli, expression of catabolic enzymes and envelope and periplasmic proteins is regulated by pH. Additional modes of pH regulation were revealed under anaerobiosis. E. coli K-12 strain W3110 was cultured anaerobically in broth medium buffered at pH 5.5 or 8.5 for protein identification on proteomic two-dimensional gels. A total of 32 proteins from anaerobic cultures show pH-dependent expression, and only four of these proteins (DsbA, TnaA, GatY, and HdeA) showed pH regulation in aerated cultures. The levels of 19 proteins were elevated at the high pH; these proteins included metabolic enzymes (DhaKLM, GapA, TnaA, HisC, and HisD), periplasmic proteins (ProX, OppA, DegQ, MalB, and MglB), and stress proteins (DsbA, Tig, and UspA). High-pH induction of the glycolytic enzymes DhaKLM and GapA suggested that there was increased fermentation to acids, which helped neutralize alkalinity. Reporter lac fusion constructs showed base induction of sdaA encoding serine deaminase under anaerobiosis; in addition, the glutamate decarboxylase genes gadA and gadB were induced at the high pH anaerobically but not with aeration. This result is consistent with the hypothesis that there is a connection between the gad system and GabT metabolism of 4-aminobutanoate. On the other hand, 13 other proteins were induced by acid; these proteins included metabolic enzymes (GatY and AckA), periplasmic proteins (TolC, HdeA, and OmpA), and redox enzymes (GuaB, HmpA, and Lpd). The acid induction of NikA (nickel transporter) is of interest because E. coli requires nickel for anaerobic fermentation. The position of the NikA spot coincided with the position of a small unidentified spot whose induction in aerobic cultures was reported previously; thus, NikA appeared to be induced slightly by acid during aeration but showed stronger induction under anaerobic conditions. Overall, anaerobic growth revealed several more pH-regulated proteins; in particular, anaerobiosis enabled induction of several additional catabolic enzymes and sugar transporters at the high pH, at which production of fermentation acids may be advantageous for the cell.


2006 ◽  
Vol 188 (2) ◽  
pp. 587-598 ◽  
Author(s):  
Moshe Herzberg ◽  
Ian K. Kaye ◽  
Wolfgang Peti ◽  
Thomas K. Wood

ABSTRACT YdgG is an uncharacterized protein that is induced in Escherichia coli biofilms. Here it is shown that deletion of ydgG decreased extracellular and increased intracellular concentrations of autoinducer 2 (AI-2); hence, YdgG enhances transport of AI-2. Consistent with this hypothesis, deletion of ydgG resulted in a 7,000-fold increase in biofilm thickness and 574-fold increase in biomass in flow cells. Also consistent with the hypothesis, deletion of ydgG increased cell motility by increasing transcription of flagellar genes (genes induced by AI-2). By expressing ydgG in trans, the wild-type phenotypes for extracellular AI-2 activity, motility, and biofilm formation were restored. YdgG is also predicted to be a membrane-spanning protein that is conserved in many bacteria, and it influences resistance to several antimicrobials, including crystal violet and streptomycin (this phenotype could also be complemented). Deletion of ydgG also caused 31% of the bacterial chromosome to be differentially expressed in biofilms, as expected, since AI-2 controls hundreds of genes. YdgG was found to negatively modulate expression of flagellum- and motility-related genes, as well as other known products essential for biofilm formation, including operons for type 1 fimbriae, autotransporter protein Ag43, curli production, colanic acid production, and production of polysaccharide adhesin. Eighty genes not previously related to biofilm formation were also identified, including those that encode transport proteins (yihN and yihP), polysialic acid production (gutM and gutQ), CP4-57 prophage functions (yfjR and alpA), methionine biosynthesis (metR), biotin and thiamine biosynthesis (bioF and thiDFH), anaerobic metabolism (focB, hyfACDR, ttdA, and fumB), and proteins with unknown function (ybfG, yceO, yjhQ, and yjbE); 10 of these genes were verified through mutation to decrease biofilm formation by 40% or more (yfjR, bioF, yccW, yjbE, yceO, ttdA, fumB, yjiP, gutQ, and yihR). Hence, it appears YdgG controls the transport of the quorum-sensing signal AI-2, and so we suggest the gene name tqsA.


Microbiology ◽  
2020 ◽  
Vol 166 (9) ◽  
pp. 880-890 ◽  
Author(s):  
Hiroshi Ogasawara ◽  
Toshiyuki Ishizuka ◽  
Shuhei Hotta ◽  
Michiko Aoki ◽  
Tomohiro Shimada ◽  
...  

Under stressful conditions, Escherichia coli forms biofilm for survival by sensing a variety of environmental conditions. CsgD, the master regulator of biofilm formation, controls cell aggregation by directly regulating the synthesis of Curli fimbriae. In agreement of its regulatory role, as many as 14 transcription factors (TFs) have so far been identified to participate in regulation of the csgD promoter, each monitoring a specific environmental condition or factor. In order to identify the whole set of TFs involved in this typical multi-factor promoter, we performed in this study ‘promoter-specific transcription-factor’ (PS-TF) screening in vitro using a set of 198 purified TFs (145 TFs with known functions and 53 hitherto uncharacterized TFs). A total of 48 TFs with strong binding to the csgD promoter probe were identified, including 35 known TFs and 13 uncharacterized TFs, referred to as Y-TFs. As an attempt to search for novel regulators, in this study we first analysed a total of seven Y-TFs, including YbiH, YdcI, YhjC, YiaJ, YiaU, YjgJ and YjiR. After analysis of curli fimbriae formation, LacZ-reporter assay, Northern-blot analysis and biofilm formation assay, we identified at least two novel regulators, repressor YiaJ (renamed PlaR) and activator YhjC (renamed RcdB), of the csgD promoter.


mSphere ◽  
2019 ◽  
Vol 4 (4) ◽  
Author(s):  
Kelvin G. K. Goh ◽  
Danilo G. Moriel ◽  
Steven J. Hancock ◽  
Minh-Duy Phan ◽  
Mark A. Schembri

ABSTRACT Proteins secreted by the type V secretion system possess multiple functions, including the capacity to mediate adhesion, aggregation, and biolfilm formation. The type V secretion system can be divided into five subclasses, one of which is the type Ve system. Proteins of the type Ve secretion system are also referred to as inverse autotransporters (IATs). In this study, we performed an in silico analysis of 126 completely sequenced Escherichia coli genomes available in the NCBI database and identified several distinct IAT-encoding gene families whose distribution varied throughout the E. coli phylogeny. The genes included three characterized IATs (intimin, fdeC, and yeeJ) and four uncharacterized IATs (here named iatA, iatB, iatC, and iatD). The four iat genes were cloned from the completely sequenced environmental E. coli strain SMS-3-5 and characterized. Three of these IAT proteins (IatB, IatC, and IatD) were expressed at the cell surface and possessed the capacity to mediate biofilm formation in a recombinant E. coli K-12 strain. Further analysis of the iatB gene, which showed a unique association with extraintestinal E. coli strains, suggested that its regulation is controlled by the LeuO global regulator. Overall, this study provides new data describing the prevalence, sequence variation, domain structure, function, and regulation of IATs found in E. coli. IMPORTANCE Escherichia coli is one of the most prevalent facultative anaerobes of the human gut. E. coli normally exists as a harmless commensal but can also cause disease following the acquisition of genes that enhance its pathogenicity. Adhesion is an important first step in colonization of the host and is mediated by an array of cell surface components. In E. coli, these include a family of adhesins secreted by the type V secretion system. Here, we identified and characterized new proteins from an emerging subclass of the type V secretion system known as the inverse autotransporters (IATs). We found that IAT-encoding genes are present in a wide range of strains and showed that three novel IATs were localized on the E. coli cell surface and mediated biofilm formation. Overall, this study provides new insight into the prevalence, function, and regulation of IATs in E. coli.


2008 ◽  
Vol 190 (11) ◽  
pp. 3851-3858 ◽  
Author(s):  
Youngnyun Kim ◽  
L. O. Ingram ◽  
K. T. Shanmugam

ABSTRACT Under anaerobic growth conditions, an active pyruvate dehydrogenase (PDH) is expected to create a redox imbalance in wild-type Escherichia coli due to increased production of NADH (>2 NADH molecules/glucose molecule) that could lead to growth inhibition. However, the additional NADH produced by PDH can be used for conversion of acetyl coenzyme A into reduced fermentation products, like alcohols, during metabolic engineering of the bacterium. E. coli mutants that produced ethanol as the main fermentation product were recently isolated as derivatives of an ldhA pflB double mutant. In all six mutants tested, the mutation was in the lpd gene encoding dihydrolipoamide dehydrogenase (LPD), a component of PDH. Three of the LPD mutants carried an H322Y mutation (lpd102), while the other mutants carried an E354K mutation (lpd101). Genetic and physiological analysis revealed that the mutation in either allele supported anaerobic growth and homoethanol fermentation in an ldhA pflB double mutant. Enzyme kinetic studies revealed that the LPD(E354K) enzyme was significantly less sensitive to NADH inhibition than the native LPD. This reduced NADH sensitivity of the mutated LPD was translated into lower sensitivity of the appropriate PDH complex to NADH inhibition. The mutated forms of the PDH had a 10-fold-higher Ki for NADH than the native PDH. The lower sensitivity of PDH to NADH inhibition apparently increased PDH activity in anaerobic E. coli cultures and created the new ethanologenic fermentation pathway in this bacterium. Analogous mutations in the LPD of other bacteria may also significantly influence the growth and physiology of the organisms in a similar fashion.


2009 ◽  
Vol 191 (17) ◽  
pp. 5369-5376 ◽  
Author(s):  
Young-Man Kwon ◽  
Bernard Weiss

ABSTRACT When Escherichia coli K-12 is grown anaerobically in medium containing tryptophan and sodium nitrate, it produces red compounds. The reaction requires functional genes for trytophanase (tnaA), a tryptophan permease (tnaB), and a nitrate reductase (narG), as well as a natural drop in the pH of the culture. Mass spectrometry revealed that the purified chromophores had mass/charge ratios that closely match those for indole red, indoxyl red, and an indole trimer. These compounds are known products of chemical reactions between indole and nitrous acid. They are derived from an initial reaction of 3-nitrosoindole with indole. Apparently, nitrite that is produced from the metabolic reduction of nitrate is converted in the acid medium to nitrous acid, which leads to the nitrosation of the indole that is generated by tryptophanase. An nfi (endonuclease V) mutant and a recA mutant were selectively killed during the period of chromophore production, and a uvrA strain displayed reduced growth. These effects depended on the addition of nitrate to the medium and on tryptophanase activity in the cells. Unexpectedly, the killing of a tnaA + nfi mutant was not accompanied by marked increases in mutation frequencies for several traits tested. The vulnerability of three DNA repair mutants indicates that a nitrosoindole or a derivative of a nitrosoindole produces lethal DNA damage.


2009 ◽  
Vol 75 (6) ◽  
pp. 1723-1733 ◽  
Author(s):  
Claire Perrin ◽  
Romain Briandet ◽  
Gregory Jubelin ◽  
Philippe Lejeune ◽  
Marie-Andrée Mandrand-Berthelot ◽  
...  

ABSTRACT The survival of bacteria exposed to toxic compounds is a multifactorial phenomenon, involving well-known molecular mechanisms of resistance but also less-well-understood mechanisms of tolerance that need to be clarified. In particular, the contribution of biofilm formation to survival in the presence of toxic compounds, such as nickel, was investigated in this study. We found that a subinhibitory concentration of nickel leads Escherichia coli bacteria to change their lifestyle, developing biofilm structures rather than growing as free-floating cells. Interestingly, whereas nickel and magnesium both alter the global cell surface charge, only nickel promotes biofilm formation in our system. Genetic evidence indicates that biofilm formation induced by nickel is mediated by the transcriptional induction of the adhesive curli-encoding genes. Biofilm formation induced by nickel does not rely on efflux mechanisms using the RcnA pump, as these require a higher concentration of nickel to be activated. Our results demonstrate that the nickel-induced biofilm formation in E. coli is an adaptational process, occurring through a transcriptional effect on genes coding for adherence structures. The biofilm lifestyle is obviously a selective advantage in the presence of nickel, but the means by which it improves bacterial survival needs to be investigated.


2001 ◽  
Vol 355 (1) ◽  
pp. 51-58 ◽  
Author(s):  
Eleanor REID ◽  
Jeff COLE ◽  
Deborah J. EAVES

In Escherichia coli K-12, c-type cytochromes are synthesized only during anaerobic growth with trimethylamine-N-oxide, nitrite or low concentrations of nitrate as the terminal electron acceptor. A thioredoxin-like protein, CcmG, is one of 12 proteins required for their assembly in the periplasm. Its postulated function is to reduce disulphide bonds formed between correctly paired cysteine residues in the cytochrome c apoproteins prior to haem attachment by CcmF and CcmH. We report that loss of CcmG synthesis by mutation was not compensated by a second mutation in disulphide-bond-forming proteins, DsbA or DsbB, or by the chemical reductant, 2-mercaptoethanesulphonic acid. An anti-CcmG polyclonal antibody was used in Western-blot analysis to probe the redox state of CcmG in mutants defective in the synthesis of other proteins essential for cytochrome c assembly. The oxidized form of CcmG accumulated not only in trxA or dipZ mutants defective in the transfer of electrons from the cytoplasm for disulphide isomerization and reduction reactions in the periplasm, but also in ccmF and ccmH mutants. The requirement of both CcmF and CcmH for the reduction of the disulphide bond in CcmG indicates that CcmG functions later than CcmF and CcmH in cytochrome c assembly, rather than in electron transfer from the membrane-associated DipZ (also known as DsbD) to CcmH. The data support a model proposed by others in which CcmG catalyses one of the last reactions specific to cytochrome c assembly.


2005 ◽  
Vol 99 (1) ◽  
pp. 78-80 ◽  
Author(s):  
Naoki Narisawa ◽  
Soichi Furukawa ◽  
Hirokazu Ogihara ◽  
Makari Yamasaki

1998 ◽  
Vol 180 (16) ◽  
pp. 4192-4198 ◽  
Author(s):  
Andrew J. Darwin ◽  
Eva C. Ziegelhoffer ◽  
Patricia J. Kiley ◽  
Valley Stewart

ABSTRACT The expression of several Escherichia coli operons is activated by the Fnr protein during anaerobic growth and is further controlled in response to nitrate and nitrite by the homologous response regulators, NarL and NarP. Among these operons, thenapF operon, encoding a periplasmic nitrate reductase, has unique features with respect to its Fnr-, NarL-, and NarP-dependent regulation. First, the Fnr-binding site is unusually located compared to the control regions of most other Fnr-activated operons, suggesting different Fnr-RNA polymerase contacts during transcriptional activation. Second, nitrate and nitrite activation is solely dependent on NarP but is antagonized by the NarL protein. In this study, we used DNase I footprint analysis to confirm our previous assignment of the unusual location of the Fnr-binding site in the napFcontrol region. In addition, the in vivo effects of Fnr-positive control mutations on napF operon expression indicate that the napF promoter is atypical with respect to Fnr-mediated activation. The transcriptional regulation of napF was successfully reproduced in vitro by using a supercoiled plasmid template and purified Fnr, NarL, and NarP proteins. These in vitro transcription experiments demonstrate that, in the presence of Fnr, the NarP protein causes efficient transcription activation whereas the NarL protein does not. This suggests that Fnr and NarP may act synergistically to activate napF operon expression. As observed in vivo, this activation by Fnr and NarP is antagonized by the addition of NarL in vitro.


Sign in / Sign up

Export Citation Format

Share Document