Measurement and prediction of land use conflict in an opencast mining area

2021 ◽  
Vol 71 ◽  
pp. 101999
Author(s):  
Yuan Gao ◽  
Jinman Wang ◽  
Min Zhang ◽  
Sijia Li
2019 ◽  
Vol 11 (5) ◽  
pp. 1473 ◽  
Author(s):  
Boyu Yang ◽  
Zhongke Bai ◽  
Yingui Cao ◽  
Feng Xie ◽  
Junjie Zhang ◽  
...  

Opencast coal mining causes serious damage to the natural landscape, resulting in the depletion of the carbon sequestration capacity in the mining activity. There are few studies on the variation of carbon sequestration capabilities caused by land use changes in opencast mining areas. This paper uses six images were used to quantify the changes in land use types from 1986 to 2015 in the Pingshuo mining area in northwest China. At the same time, used statistical analysis and mathematical models to study soil and vegetation carbon sequestration. Results indicate that the total carbon sequestration exhibits a significant downward trend from 4.58 × 106 Mg in 1986 to 3.78 × 106 Mg in 2015, with the decrease of soil carbon sequestration accounting for the largest proportion. The carbon sequestration of arable land accounted for 51% of the total carbon sequestration in the mining area, followed by grassland (31%) and forestland (18%). Land reclamation contributed to the greatest increase in carbon sequestration of arable land from 17,890.15 Mg (1986) to 27,837.95 Mg (2015). Additionally, the downward trend in the carbon sequestration capacity of the mining ecosystem was mitigated after 2010 as the positive effects of land reclamation gradually amplified over time and as the mining techniques were greatly optimized in recent years in the Pingshuo mining area. Thus, terrestrial carbon sequestration can be improved through land reclamation projects and optimized mining activities. These results can help guide the utilization of reclaimed land in the future.


2019 ◽  
Vol 45 (2) ◽  
pp. 709
Author(s):  
J.D. Maldonado-Marín ◽  
L.C. Alatorre-Cejudo ◽  
E. Sánchez-Flores

This research incorporates new forms of analysis for urban planning and development in Ciudad Cuauhtémoc, Chihuahua (Mexico), providing elements of reference by identifying areas with potentiality and limitations for urban land use, as well as for agricultural and conservation activities. The general objective was to identify the main conflicts between land uses and coverages to determine the areas of greatest territorial suitability for the city's growth. For this purpose, the Land Use Conflict Identification Strategy (LUCIS) model was used to understand the spatial significance of the status of land use policies, including likely urban patterns associated with agricultural and conservation trends. In the case study, a total of 149,139 inhabitants are estimated for the year 2030, which represents the need for an additional 392.42 hectares to accommodate the population growth. For that of the 16,272.21 hectares that has the population limit, 38 % were allocated to the category of agriculture, 11.95% to conservation soils and 49.67% to urban land (including the existing urban area). There is a significant portion of the area that is in conflict between the different land uses. It concludes, that the integration of a conflict resolution model for land use and land cover represents a practical solution that contributes to the improvement of processes of urban development planning.


2018 ◽  
Vol 20 (1) ◽  
pp. 50
Author(s):  
Aziz Bahtiar Rifa’i ◽  
Fadjar Hari Mardiansjah

This study examines the impact of agricultural land use change into a petroleum mining area to farmers’ socioeconomic conditions around petroleum mining project area in Gayam District of Kabupaten Bojonegoro. The analyses used a mix method, using both quantitative and qualitative approaches. The quantitative approach is used to determine the impact of agricultural land use change on the social and economic aspects with the respondent farmers were supported with a scoring method to determine the condition of socioeconomic vulnerability of farmers, while the qualitative approach carried out through in-depth interviews to some informants who have been affected by the project. The results shows that the presence of the petroleum mining industry has not had a positive impact yet on the farmers’ socioeconomic conditions. By the 700 hectares of agricultural land conversion, the agricultural production capacity of the area tends to decrease, including by the decreasing of the productivity of some agricultural land in a radius of 500 m from the fenceof the mining area as they are affected by the fence’s spotlight. The farmers' income also tends to decrease because of the decreasing of their working hours as the big loss of agricultural land in the area. As a result, many farmers should work outside of the area to search replacement of the arable land. These situations lead to a moderate condition of social and economic vulnerability for the farmers, especially for those who still have sufficient assets to meet the needs of their economic. 


Sign in / Sign up

Export Citation Format

Share Document