Multicellular LSTM-based deep learning model for aero-engine remaining useful life prediction

Author(s):  
Sheng Xiang ◽  
Yi Qin ◽  
Jun Luo ◽  
Huayan Pu ◽  
Baoping Tang
Electronics ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 39
Author(s):  
Zhiyuan Xie ◽  
Shichang Du ◽  
Jun Lv ◽  
Yafei Deng ◽  
Shiyao Jia

Remaining Useful Life (RUL) prediction is significant in indicating the health status of the sophisticated equipment, and it requires historical data because of its complexity. The number and complexity of such environmental parameters as vibration and temperature can cause non-linear states of data, making prediction tremendously difficult. Conventional machine learning models such as support vector machine (SVM), random forest, and back propagation neural network (BPNN), however, have limited capacity to predict accurately. In this paper, a two-phase deep-learning-model attention-convolutional forget-gate recurrent network (AM-ConvFGRNET) for RUL prediction is proposed. The first phase, forget-gate convolutional recurrent network (ConvFGRNET) is proposed based on a one-dimensional analog long short-term memory (LSTM), which removes all the gates except the forget gate and uses chrono-initialized biases. The second phase is the attention mechanism, which ensures the model to extract more specific features for generating an output, compensating the drawbacks of the FGRNET that it is a black box model and improving the interpretability. The performance and effectiveness of AM-ConvFGRNET for RUL prediction is validated by comparing it with other machine learning methods and deep learning methods on the Commercial Modular Aero-Propulsion System Simulation (C-MAPSS) dataset and a dataset of ball screw experiment.


Sensors ◽  
2020 ◽  
Vol 20 (22) ◽  
pp. 6626
Author(s):  
Chang Woo Hong ◽  
Changmin Lee ◽  
Kwangsuk Lee ◽  
Min-Seung Ko ◽  
Dae Eun Kim ◽  
...  

This study prognoses the remaining useful life of a turbofan engine using a deep learning model, which is essential for the health management of an engine. The proposed deep learning model affords a significantly improved accuracy by organizing networks with a one-dimensional convolutional neural network, long short-term memory, and bidirectional long short-term memory. In particular, this paper investigates two practical and crucial issues in applying the deep learning model for system prognosis. The first is the requirement of numerous sensors for different components, i.e., the curse of dimensionality. Second, the deep neural network cannot identify the problematic component of the turbofan engine due to its “black box” property. This study thus employs dimensionality reduction and Shapley additive explanation (SHAP) techniques. Dimensionality reduction in the model reduces the complexity and prevents overfitting, while maintaining high accuracy. SHAP analyzes and visualizes the black box to identify the sensors. The experimental results demonstrate the high accuracy and efficiency of the proposed model with dimensionality reduction and show that SHAP enhances the explainability in a conventional deep learning model for system prognosis.


2021 ◽  
Vol 7 ◽  
pp. 5562-5574 ◽  
Author(s):  
Shunli Wang ◽  
Siyu Jin ◽  
Dekui Bai ◽  
Yongcun Fan ◽  
Haotian Shi ◽  
...  

2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Hai-Kun Wang ◽  
Yi Cheng ◽  
Ke Song

The remaining useful life estimation is a key technology in prognostics and health management (PHM) systems for a new generation of aircraft engines. With the increase in massive monitoring data, it brings new opportunities to improve the prediction from the perspective of deep learning. Therefore, we propose a novel joint deep learning architecture that is composed of two main parts: the transformer encoder, which uses scaled dot-product attention to extract dependencies across distances in time series, and the temporal convolution neural network (TCNN), which is constructed to fix the insensitivity of the self-attention mechanism to local features. Both parts are jointly trained within a regression module, which implies that the proposed approach differs from traditional ensemble learning models. It is applied on the Commercial Modular Aero-Propulsion System Simulation (C-MAPSS) dataset from the Prognostics Center of Excellence at NASA Ames, and satisfactory results are obtained, especially under complex working conditions.


2020 ◽  
Vol 2020 ◽  
pp. 1-16
Author(s):  
Hao Zhang ◽  
Qiang Zhang ◽  
Siyu Shao ◽  
Tianlin Niu ◽  
Xinyu Yang ◽  
...  

Deep learning has a strong feature learning ability, which has proved its effectiveness in fault prediction and remaining useful life prediction of rotatory machine. However, training a deep network from scratch requires a large amount of training data and is time-consuming. In the practical model training process, it is difficult for the deep model to converge when the parameter initialization is inappropriate, which results in poor prediction performance. In this paper, a novel deep learning framework is proposed to predict the remaining useful life of rotatory machine with high accuracy. Firstly, model parameters and feature learning ability of the pretrained model are transferred to the new network by means of transfer learning to achieve reasonable initialization. Then, the specific sensor signals are converted to RGB image as the specific task data to fine-tune the parameters of the high-level network structure. The features extracted from the pretrained network are the input into the Bidirectional Long Short-Term Memory to obtain the RUL prediction results. The ability of LSTM to model sequence signals and the dynamic learning ability of bidirectional propagation to time information contribute to accurate RUL prediction. Finally, the deep model proposed in this paper is tested on the sensor signal dataset of bearing and gearbox. The high accuracy prediction results show the superiority of the transfer learning-based sequential network in RUL prediction.


2020 ◽  
Vol 25 (3) ◽  
pp. 1243-1254 ◽  
Author(s):  
Cheng Cheng ◽  
Guijun Ma ◽  
Yong Zhang ◽  
Mingyang Sun ◽  
Fei Teng ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document