scholarly journals Viscous damping exciting friction-induced vibration in pin-on-disk systems

2021 ◽  
pp. 100299
Author(s):  
Matthias Graf ◽  
Tobias Lankenau
2001 ◽  
Author(s):  
David S. Xu ◽  
Hooshang Heshmat

Abstract Friction induced vibration at contact interfaces is still a big challenging problem and not well understood how to affect the high cycle fatigue (HCF) failures in gas turbine engine and other machinery. Most researchers conducted on the subject of only two bodies in contact with the Coulomb’s friction law only. In this paper, the interface friction phenomena and induced vibration are investigated by means of the improved third-body composite interface micro-slip model which includes a variable friction coefficient and a flexible contact, represented as effective stiffness and equivalent viscous damping elements. The third-body considered herein is almost always present at contacting interfaces and is comprised of generated wear debris or a soft intermediate anti-fretting coating applied to the mating surfaces. This kind of third-body can be viewed as a thin factional damping material layer to provide shear energy dissipation in order to mitigate the destructive effects of high frequency vibrations in components with highly stressed contacts. A properly engineered third-body can also play the role of both a damping material and a lubricant to decrease wear rate. For the study presented, a semi-empirical formula for the third-body powder properties was employed, depending on the experimental data and the non-linear regression approach. The experimental powder TiO2 data included density, shear strength, frictional coefficients, loss factor as a function of normal load, shear strain, speed and frequency. The results in this paper indicate that the third body semi-empirical equivalent stiffness / viscous damping representation of a flexible contact with variable friction coefficient does indeed have merit and does have influence on overall system response. It has been shown that the third body effects should be considered in the friction and damping induced vibration on the contact interfaces. Such a model may be used to assess designs and material coating approaches to counter fretting in highly stressed contacts as well as assessing the interaction of contact kinematics on HCF failures. Further experimental investigation of specified friction contact configuration of the components needs to be conducted in order to evaluate their friction characteristics and move this technology toward a practical engineering applications.


1970 ◽  
Vol 92 (4) ◽  
pp. 543-549 ◽  
Author(s):  
P. L. Ko ◽  
C. A. Brockley

The design, development, and application of a pin-on-disk tribometer for the measurement of friction and friction-induced vibration is described. Careful isolation techniques eliminated many of the errors in measurement which are associated with vibration arising from the apparatus or the surroundings. The use of acceleration, velocity, and displacement transducers in association with a one-cycle sequence triggering circuit and other electronic devices permitted the accurate measurement of kinetic friction forces in the presence of friction-induced vibration.


2001 ◽  
Vol 77 (1-2) ◽  
pp. 3-10 ◽  
Author(s):  
Boris Belinskiy ◽  
Suzanne Lenhart

Author(s):  
Mehdi Kazemi ◽  
Abdolreza Rahimi

Generally, interactions at surface asperities are the cause of wear. Two-Thirds of wear in industry occurs because of the abrasive or adhesive mechanisms. This research presents an analytical model for abrasion of additive manufactured Digital Light Processing products using pin-on-disk method. Particularly, the relationship between abrasion volume, normal load, and surface asperities’ angle is investigated. To verify the proposed mathematical model, the results of this model are verified with the practical experiments. Results show that the most influential parameters on abrasion rate are normal load and surface’s normal angle. Abrasion value increases linearly with increasing normal load. The maximum abrasion value occurs when the surface’s normal angle during fabrication is 45°. After the asperities are worn the abrasion volume is the same for all specimens with different surface’s normal angle. Though layer thickness does not directly affect the wear rate, but surface roughness tests show that layer thickness has a great impact on the quality of the abraded surface. When the thickness of the layers is high, the abraded surface has deeper valleys, and thus has a more negative skewness. This paper presents an original approach in abrasion behavior improvement of DLP parts which no research has been done on it so far; thus, bringing the AM one step closer to maturity.


Author(s):  
Jianqiang Yu ◽  
Xiaomin Dong ◽  
Tao Wang ◽  
Zhengmu Zhou ◽  
Yaqin Zhou

This paper presents the damping characteristics of a linear magneto-rheological (MR) damper with dual controllable ducts based on numerical and experimental analysis. The novel MR damper consisting of a dual-rod cylinder system and a MR valve is used to reduce the influences of viscous damping force and improve dynamic range. Driven by the dual-rod cylinder system, MR fluid flows in the MR valve. The pressure drop of the MR valve with dual independent controllable ducts can be controlled by tuning the current of two independent coils. Based on the mathematical model and the finite element method, the damping characteristics of the MR damper is simulated. A prototype is designed and tested on MTS machine to evaluate its damping characteristics. The results show that the working states and damping force of the MR damper can be controlled by the two independent coils.


2019 ◽  
Vol 26 (02) ◽  
pp. 1850143
Author(s):  
SAEED NIYAZBAKHSH ◽  
KAMRAN AMINI ◽  
FARHAD GHARAVI

Anodic oxide coatings are applied on aluminum alloys in order to improve corrosion resistance and to increase hardness and wear resistance. In the current study, a hard anodic coating was applied on AA7075-T6 aluminum alloy. To survey the anodizing temperature (electrolyte temperature) effect, three temperatures, namely, [Formula: see text]C, 0∘C and 5∘C were chosen and the samples were sealed in boiling water and sodium dichromate to study the role of sealing. For measuring the oxide coatings porosity and hardness and also for comparing the samples’ wear resistance field-emission scanning electron microscopy (FESEM), microhardness test and pin-on-disk method were utilized, respectively. The results showed that by increasing the anodizing temperature, hardness and consequently wear resistance decreased so that hardness and weight loss in the samples with no sealing decreased from 460[Formula: see text]HV and 0.61[Formula: see text]mg at [Formula: see text]C to 405 and 358[Formula: see text]HV and 1.05 and 1.12[Formula: see text]mg at 0∘C and 5∘C, respectively, which is due to the porosity increment by increasing the anodizing temperature. Also, sealing in boiling water and dichromate contributed to soft phases and coating hydration, which resulted in a decrease in hardness and wear resistance. Hardness and weight loss in the coated samples at [Formula: see text]C decreased from 460[Formula: see text]HV and 0.61[Formula: see text]mg in the samples with no sealing to 435 and 417[Formula: see text]HV and 0.72 and 0.83[Formula: see text]mg in the samples sealed in boiling water and dichromate, respectively.


Materials ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1336
Author(s):  
Jorge Caessa ◽  
Todor Vuchkov ◽  
Talha Bin Yaqub ◽  
Albano Cavaleiro

Friction and wear contribute to high energetic losses that reduce the efficiency of mechanical systems. However, carbon alloyed transition metal dichalcogenide (TMD-C) coatings possess low friction coefficients in diverse environments and can self-adapt to various sliding conditions. Hence, in this investigation, a semi-industrial magnetron sputtering device, operated in direct current mode (DC), is utilized to deposit several molybdenum-selenium-carbon (Mo-Se-C) coatings with a carbon content up to 60 atomic % (at. %). Then, the carbon content influence on the final properties of the films is analysed using several structural, mechanical and tribological characterization techniques. With an increasing carbon content in the Mo-Se-C films, lower Se/Mo ratio, porosity and roughness appeared, while the hardness and compactness increased. Pin-on-disk (POD) experiments performed in humid air disclosed that the Mo-Se-C vs. nitrile butadiene rubber (NBR) friction is higher than Mo-Se-C vs. steel friction, and the coefficient of friction (CoF) is higher at 25 °C than at 200 °C, for both steel and NBR countersurfaces. In terms of wear, the Mo-Se-C coatings with 51 at. % C showed the lowest specific wear rates of all carbon content films when sliding against steel. The study shows the potential of TMD-based coatings for friction and wear reduction sliding against rubber.


Sign in / Sign up

Export Citation Format

Share Document