scholarly journals Comparison and analysis of the Atangana–Baleanu and Caputo–Fabrizio fractional derivatives for generalized Casson fluid model with heat generation and chemical reaction

2017 ◽  
Vol 7 ◽  
pp. 789-800 ◽  
Author(s):  
Nadeem Ahmad Sheikh ◽  
Farhad Ali ◽  
Muhammad Saqib ◽  
Ilyas Khan ◽  
Syed Aftab Alam Jan ◽  
...  
Author(s):  
Dzuliana Fatin Jamil ◽  
Salah Uddin ◽  
Muhamad Ghazali Kamardan ◽  
Rozaini Roslan

This paper investigates the magnetic blood flow in an inclined multi-stenosed artery under the influence of a uniformly distributed magnetic field and an oscillating pressure gradient. The blood is modelled using the non-Newtonian Casson fluid model. The governing fractional differential equations are expressed by using the fractional Caputo-Fabrizio derivative without singular kernel. Exact analytical solutions are obtained by using the Laplace and finite Hankel transforms for both velocities. The velocities of blood flow and magnetic particles are graphically presented. It shows that the velocity increases with respect to the Reynolds number and the Casson parameter. Meanwhile, the velocity decreases as the Hartmann number increases. These results are useful for the diagnosis and treatment of certain medical problems.


2021 ◽  
Vol 104 (3) ◽  
pp. 003685042110316
Author(s):  
Salman Akhtar ◽  
Luthais B McCash ◽  
Sohail Nadeem ◽  
Salman Saleem ◽  
Alibek Issakhov

The electro-osmotically modulated hemodynamic across an artery with multiple stenosis is mathematically evaluated. The non-Newtonian behaviour of blood flow is tackled by utilizing Casson fluid model for this flow problem. The blood flow is confined in such arteries due to the presence of stenosis and this theoretical analysis provides the electro-osmotic effects for blood flow through such arteries. The mathematical equations that govern this flow problem are converted into their dimensionless form by using appropriate transformations and then exact mathematical computations are performed by utilizing Mathematica software. The range of the considered parameters is given as [Formula: see text]. The graphical results involve combine study of symmetric and non-symmetric structure for multiple stenosis. Joule heating effects are also incorporated in energy equation together with viscous effects. Streamlines are plotted for electro-kinetic parameter [Formula: see text] and flow rate [Formula: see text]. The trapping declines in size with incrementing [Formula: see text], for symmetric shape of stenosis. But the size of trapping increases for the non-symmetric case.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Asma Khalid ◽  
Ilyas Khan ◽  
Sharidan Shafie

The unsteady free flow of a Casson fluid past an oscillating vertical plate with constant wall temperature has been studied. The Casson fluid model is used to distinguish the non-Newtonian fluid behaviour. The governing partial differential equations corresponding to the momentum and energy equations are transformed into linear ordinary differential equations by using nondimensional variables. Laplace transform method is used to find the exact solutions of these equations. Expressions for shear stress in terms of skin friction and the rate of heat transfer in terms of Nusselt number are also obtained. Numerical results of velocity and temperature profiles with various values of embedded flow parameters are shown graphically and their effects are discussed in detail.


Symmetry ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 531 ◽  
Author(s):  
Ullah ◽  
Abdullah Alkanhal ◽  
Shafie ◽  
Nisar ◽  
Khan ◽  
...  

The aim of the present analysis is to provide local similarity solutions of Casson fluid over a non-isothermal cylinder subject to suction/blowing. The cylinder is placed inside a porous medium and stretched in a nonlinear way. Further, the impact of chemical reaction, viscous dissipation, and heat generation/absorption on flow fields is also investigated. Similarity transformations are employed to convert the nonlinear governing equations to nonlinear ordinary differential equations, and then solved via the Keller box method. Findings demonstrate that the magnitude of the friction factor and mass transfer rate are suppressed with increment in Casson parameter, whereas heat transfer rate is found to be intensified. Increase in the curvature parameter enhanced the flow field distributions. The magnitude of wall shear stress is noticed to be higher with an increase in porosity and suction/blowing parameters.


Biorheology ◽  
1975 ◽  
Vol 12 (2) ◽  
pp. 111-119 ◽  
Author(s):  
Walter P. Walawender ◽  
Te Yu Chen ◽  
David F. Cala

2021 ◽  
Vol 5 (1) ◽  
pp. 16-26
Author(s):  
Winifred N. Mutuku ◽  
Anselm O. Oyem

This study presents a convectively heated hydromagnetic Stagnation-Point Flow (SPF) of an electrically conducting Casson fluid towards a vertically stretching/shrinking sheet. The Casson fluid model is used to characterize the non-Newtonian fluid behaviour and using similarity variables, the governing partial differential equations are transformed into coupled nonlinear ordinary differential equations. The dimensionless nonlinear equations are solved numerically by Runge-Kutta Fehlberg integration scheme with shooting technique. The effects of the thermophysical parameters on velocity and temperature profiles are presented graphically and discussed quantitatively. The result shows that the flow field velocity decreases with increase in magnetic field parameter and Casson fluid parameter .


Author(s):  
RADHAKRISHNAN BHEEMAN ◽  
Tamilarasi Mathivanan

This research is about the transfer of heat of a generalized fractional Casson fluid on an unsteady boundary layer which is passing through an infinite oscillating plate, in vertical direction combined with the Newtonian heating. The results are obtained by using modified Riemann-Liouville fractional derivative. The present fluid model, starts with the governing equations which are then converted to a system of partial differential equations(linear) by using some suitable non-dimensional variables. Using the method of integral balance and the Laplace transform technique, an analytical solution is obtained. The velocity and temperature expressions are derived and the effects of modelling parameters re shown in tables and graphs to validate the obtained theoretical results.


Sign in / Sign up

Export Citation Format

Share Document