scholarly journals Laser micromachining of steel and copper using femtosecond laser pulses in GHz burst mode

2021 ◽  
Vol 22 ◽  
pp. 103847
Author(s):  
Ona Balachninaitė ◽  
Viktorija Tamulienė ◽  
Laurynas Eičas ◽  
Virgilijus Vaičaitis
Micromachines ◽  
2020 ◽  
Vol 11 (12) ◽  
pp. 1093
Author(s):  
Evaldas Kažukauskas ◽  
Simas Butkus ◽  
Piotr Tokarski ◽  
Vytautas Jukna ◽  
Martynas Barkauskas ◽  
...  

Biocompatible polymers are used for many different purposes (catheters, artificial heart components, dentistry products, etc.). An important field for biocompatible polymers is the production of vision implants known as intraocular lenses or custom-shape contact lenses. Typically, curved surfaces are manufactured by mechanical means such as milling, turning or lathe cutting. The 2.5 D objects/surfaces can also be manufactured by means of laser micromachining; however, due to the nature of light–matter interaction, it is difficult to produce a surface finish with surface roughness values lower than ~1 µm Ra. Therefore, laser micromachining alone can’t produce the final parts with optical-grade quality. Laser machined surfaces may be polished via mechanical methods; however, the process may take up to several days, which makes the production of implants economically challenging. The aim of this study is the investigation of the polishing capabilities of rough (~1 µm Ra) hydrophilic acrylic surfaces using bursts of femtosecond laser pulses. By changing different laser parameters, it was possible to find a regime where the surface roughness can be minimized to 18 nm Ra, while the polishing of the entire part takes a matter of seconds. The produced surface demonstrates a transparent appearance and the process shows great promise towards commercial fabrication of low surface roughness custom-shape optics.


2018 ◽  
Vol 22 (4) ◽  
pp. 324-347 ◽  
Author(s):  
Yiming Rong ◽  
Pengfei Ji ◽  
Mengzhe He ◽  
Yuwen Zhang ◽  
Yong Tang

Micromachines ◽  
2020 ◽  
Vol 11 (11) ◽  
pp. 994
Author(s):  
Andrea Crespi ◽  
Giacomo Corrielli

Femtosecond laser pulses have proven, in the recent years, their formidable potential as a micromachining tool applicable to a variety of materials [...]


2004 ◽  
Vol 820 ◽  
Author(s):  
Myung-Il Park ◽  
Jun Rye Choi ◽  
Mira Park ◽  
Dae Sik Choi ◽  
Sae Chae Jeoung ◽  
...  

AbstractLaser micromachining technology with 150 femtosecond pulses is developed to fabricate glass microfluidic devices. A short theoretical analysis of femtosecond laser ablation is reported to characterize the femtosecond laser micromachining. The ablated crater diameter is measured as a function of the number of laser pulses as well as laser fluence. Two different ablation regimes are observed and the transition between the regimes is dependent on both the laser fluence and the number of laser shots. Based on the ablation phenomena described, microfluidic devices are fabricated with commercially available soda lime glasses (76 mm × 26 mm × 1 mm, Knittel Glaser, Germany). In addition to a microchannel for microfluidics, the capillary as well as optical fiber for detecting is integrated on the same substrate. The substrate is successively packaged with a lid slide glass by a thermal direct bonding. The presented developments are suitable for fast turn-around design cycle and inexpensive procedure, which provide rapid prototyping of MEMS devices.


2012 ◽  
Vol 217-219 ◽  
pp. 2213-2216
Author(s):  
Li Tao Qi ◽  
Jin Ping Hu

In this paper, high quality grooves were fabricated by femtosecond laser pulse on sapphire surface. Grooves were fabricated under different experimental conditions. The lateral and vertical machining precision was evaluated by scanning electron microscopy and profilometer. High quality grooves could be obtained at the condition of low pulse energy, high scanning-speed and increasing the number of laser scans. The relationship between the width and depth of the groove and the key parameters of femtosecond laser micromachining system was studied. Several samples of the high quality grooves were obtained by femtosecond laser pulses. High quality grooves have a potential application of the fabrication of sapphire-based devices.


2003 ◽  
Vol 780 ◽  
Author(s):  
R. Houbertz ◽  
J. Schulz ◽  
L. Fröhlich ◽  
G. Domann ◽  
M. Popall ◽  
...  

AbstractReal 3-D sub-νm lithography was performed with two-photon polymerization (2PP) using inorganic-organic hybrid polymer (ORMOCER®) resins. The hybrid polymers were synthesized by hydrolysis/polycondensation reactions (modified sol-gel synthesis) which allows one to tailor their material properties towards the respective applications, i.e., dielectrics, optics or passivation. Due to their photosensitive organic functionalities, ORMOCER®s can be patterned by conventional photo-lithography as well as by femtosecond laser pulses at 780 nm. This results in polymerized (solid) structures where the non-polymerized parts can be removed by conventional developers.ORMOCER® structures as small as 200 nm or even below were generated by 2PP of the resins using femtosecond laser pulses. It is demonstrated that ORMOCER®s have the potential to be used in components or devices built up by nm-scale structures such as, e.g., photonic crystals. Aspects of the materials in conjunction to the applied technology are discussed.


Author(s):  
K. H. Leong ◽  
T. Y. Plew ◽  
R. L. Maynard ◽  
A. A. Said ◽  
L. A. Walker

Author(s):  
V. Pouget ◽  
E. Faraud ◽  
K. Shao ◽  
S. Jonathas ◽  
D. Horain ◽  
...  

Abstract This paper presents the use of pulsed laser stimulation with picosecond and femtosecond laser pulses. We first discuss the resolution improvement that can be expected when using ultrashort laser pulses. Two case studies are then presented to illustrate the possibilities of the pulsed laser photoelectric stimulation in picosecond single-photon and femtosecond two-photon modes.


Sign in / Sign up

Export Citation Format

Share Document