scholarly journals Editorial for the Special Issue on Femtosecond Laser Micromachining for Photonics Applications

Micromachines ◽  
2020 ◽  
Vol 11 (11) ◽  
pp. 994
Author(s):  
Andrea Crespi ◽  
Giacomo Corrielli

Femtosecond laser pulses have proven, in the recent years, their formidable potential as a micromachining tool applicable to a variety of materials [...]

2012 ◽  
Vol 217-219 ◽  
pp. 2213-2216
Author(s):  
Li Tao Qi ◽  
Jin Ping Hu

In this paper, high quality grooves were fabricated by femtosecond laser pulse on sapphire surface. Grooves were fabricated under different experimental conditions. The lateral and vertical machining precision was evaluated by scanning electron microscopy and profilometer. High quality grooves could be obtained at the condition of low pulse energy, high scanning-speed and increasing the number of laser scans. The relationship between the width and depth of the groove and the key parameters of femtosecond laser micromachining system was studied. Several samples of the high quality grooves were obtained by femtosecond laser pulses. High quality grooves have a potential application of the fabrication of sapphire-based devices.


Micromachines ◽  
2020 ◽  
Vol 11 (12) ◽  
pp. 1093
Author(s):  
Evaldas Kažukauskas ◽  
Simas Butkus ◽  
Piotr Tokarski ◽  
Vytautas Jukna ◽  
Martynas Barkauskas ◽  
...  

Biocompatible polymers are used for many different purposes (catheters, artificial heart components, dentistry products, etc.). An important field for biocompatible polymers is the production of vision implants known as intraocular lenses or custom-shape contact lenses. Typically, curved surfaces are manufactured by mechanical means such as milling, turning or lathe cutting. The 2.5 D objects/surfaces can also be manufactured by means of laser micromachining; however, due to the nature of light–matter interaction, it is difficult to produce a surface finish with surface roughness values lower than ~1 µm Ra. Therefore, laser micromachining alone can’t produce the final parts with optical-grade quality. Laser machined surfaces may be polished via mechanical methods; however, the process may take up to several days, which makes the production of implants economically challenging. The aim of this study is the investigation of the polishing capabilities of rough (~1 µm Ra) hydrophilic acrylic surfaces using bursts of femtosecond laser pulses. By changing different laser parameters, it was possible to find a regime where the surface roughness can be minimized to 18 nm Ra, while the polishing of the entire part takes a matter of seconds. The produced surface demonstrates a transparent appearance and the process shows great promise towards commercial fabrication of low surface roughness custom-shape optics.


2012 ◽  
Vol 78 (4) ◽  
pp. 355-361 ◽  
Author(s):  
S. M. WIGGINS ◽  
M. P. REIJNDERS ◽  
S. ABUAZOUM ◽  
K. HART ◽  
G. VIEUX ◽  
...  

AbstractGas-filled capillary discharge waveguides are a commonly employed medium in laser–plasma interaction applications, such as the laser wakefield accelerator, because they can simultaneously guide high-power laser pulses while acting as the medium for acceleration. In this paper, the production of both straight and linearly tapered capillaries using a femtosecond laser micromachining technique is presented. A tapered capillary is shown to possess a smooth variation in diameter (from 305 μm to 183 μm) along its entire 40 mm length, which would lead to a longitudinal plasma density gradient, thereby dramatically improving the laser–plasma interaction efficiency in applications. Efficient guiding with up to 82% energy transmission of the fundamental Gaussian mode of a low intensity, 50 fs duration laser pulse is shown for both types of capillary waveguide.


2004 ◽  
Vol 820 ◽  
Author(s):  
Myung-Il Park ◽  
Jun Rye Choi ◽  
Mira Park ◽  
Dae Sik Choi ◽  
Sae Chae Jeoung ◽  
...  

AbstractLaser micromachining technology with 150 femtosecond pulses is developed to fabricate glass microfluidic devices. A short theoretical analysis of femtosecond laser ablation is reported to characterize the femtosecond laser micromachining. The ablated crater diameter is measured as a function of the number of laser pulses as well as laser fluence. Two different ablation regimes are observed and the transition between the regimes is dependent on both the laser fluence and the number of laser shots. Based on the ablation phenomena described, microfluidic devices are fabricated with commercially available soda lime glasses (76 mm × 26 mm × 1 mm, Knittel Glaser, Germany). In addition to a microchannel for microfluidics, the capillary as well as optical fiber for detecting is integrated on the same substrate. The substrate is successively packaged with a lid slide glass by a thermal direct bonding. The presented developments are suitable for fast turn-around design cycle and inexpensive procedure, which provide rapid prototyping of MEMS devices.


2006 ◽  
Vol 532-533 ◽  
pp. 560-563
Author(s):  
Yan Shen Wang ◽  
Shen Dong ◽  
Yan Qiang Yang ◽  
Ying Chun Liang ◽  
Bo Wang ◽  
...  

Femtosecond laser pulses are irradiated on a single-side polished single-crystalline silicon wafer. Metamorphic zone appears around the ablated zone and the morphology changes gradually in the metamorphic zone. Typical phenomena of thermal ablation such as melt-resolidification and subtransparent glassy materials occur in the marginal area of the ablated zone. No apparent changes are found among microscopic morphologies of the ablated, metamorphic and unirradiated zones. There are flaws and spallations on the smooth back surface of the wafer, which are caused by the stress inside the sample. Nanomechanical properties of the sample surface hardly change in the small scope of the backside around the ablated zone. While regular changes occur in large scope, which is the conjunct result of such stresses caused by many different collateral damages.


2021 ◽  
Vol 22 ◽  
pp. 103847
Author(s):  
Ona Balachninaitė ◽  
Viktorija Tamulienė ◽  
Laurynas Eičas ◽  
Virgilijus Vaičaitis

2003 ◽  
Vol 780 ◽  
Author(s):  
R. Houbertz ◽  
J. Schulz ◽  
L. Fröhlich ◽  
G. Domann ◽  
M. Popall ◽  
...  

AbstractReal 3-D sub-νm lithography was performed with two-photon polymerization (2PP) using inorganic-organic hybrid polymer (ORMOCER®) resins. The hybrid polymers were synthesized by hydrolysis/polycondensation reactions (modified sol-gel synthesis) which allows one to tailor their material properties towards the respective applications, i.e., dielectrics, optics or passivation. Due to their photosensitive organic functionalities, ORMOCER®s can be patterned by conventional photo-lithography as well as by femtosecond laser pulses at 780 nm. This results in polymerized (solid) structures where the non-polymerized parts can be removed by conventional developers.ORMOCER® structures as small as 200 nm or even below were generated by 2PP of the resins using femtosecond laser pulses. It is demonstrated that ORMOCER®s have the potential to be used in components or devices built up by nm-scale structures such as, e.g., photonic crystals. Aspects of the materials in conjunction to the applied technology are discussed.


Author(s):  
K. H. Leong ◽  
T. Y. Plew ◽  
R. L. Maynard ◽  
A. A. Said ◽  
L. A. Walker

Sign in / Sign up

Export Citation Format

Share Document