scholarly journals Hybrid FDTD algorithm for electromagnetic analysis of fine structures

2021 ◽  
pp. 105017
Author(s):  
Sihan Zhao ◽  
Bing Wei ◽  
Xinbo He ◽  
Yiwen Li ◽  
Xiaolong Wei
Author(s):  
E.C. Chew ◽  
C.L. Li ◽  
D.P. Huang ◽  
H.C. Ho ◽  
L.S. Mak ◽  
...  

An epithelial cell line, NPC/HK1, has recently been established from a biopsy specimen of a recurrent tumour of the nasopharynx which was histologically diagnosed as a moderately to well differentiated squamous cell carcinoma. A definite decrease in the amount of tonofilaments and desmosomes in the NPC/HK1 cells during the cell line establishment was observed. The present communication reports on the fine structures of the NPC/HK1 cells heterotraneplanted in athymic nude mice.


Author(s):  
Xudong Weng ◽  
Peter Rez

In electron energy loss spectroscopy, quantitative chemical microanalysis is performed by comparison of the intensity under a specific inner shell edge with the corresponding partial cross section. There are two commonly used models for calculations of atomic partial cross sections, the hydrogenic model and the Hartree-Slater model. Partial cross sections could also be measured from standards of known compositions. These partial cross sections are complicated by variations in the edge shapes, such as the near edge structure (ELNES) and extended fine structures (ELEXFS). The role of these solid state effects in the partial cross sections, and the transferability of the partial cross sections from material to material, has yet to be fully explored. In this work, we consider the oxygen K edge in several oxides as oxygen is present in many materials. Since the energy window of interest is in the range of 20-100 eV, we limit ourselves to the near edge structures.


Author(s):  
Hiroki Kurata ◽  
Kazuhiro Nagai ◽  
Seiji Isoda ◽  
Takashi Kobayashi

Electron energy loss spectra of transition metal oxides, which show various fine structures in inner shell edges, have been extensively studied. These structures and their positions are related to the oxidation state of metal ions. In this sence an influence of anions coordinated with the metal ions is very interesting. In the present work, we have investigated the energy loss near-edge structures (ELNES) of some iron compounds, i.e. oxides, chlorides, fluorides and potassium cyanides. In these compounds, Fe ions (Fe2+ or Fe3+) are octahedrally surrounded by six ligand anions and this means that the local symmetry around each iron is almost isotropic.EELS spectra were obtained using a JEM-2000FX with a Gatan Model-666 PEELS. The energy resolution was about leV which was mainly due to the energy spread of LaB6 -filament. The threshole energies of each edges were measured using a voltage scan module which was calibrated by setting the Ni L3 peak in NiO to an energy value of 853 eV.


Author(s):  
V. Serin ◽  
K. Hssein ◽  
G. Zanchi ◽  
J. Sévely

The present developments of electron energy analysis in the microscopes by E.E.L.S. allow an accurate recording of the spectra and of their different complex structures associated with the inner shell electron excitation by the incident electrons (1). Among these structures, the Extended Energy Loss Fine Structures (EXELFS) are of particular interest. They are equivalent to the well known EXAFS oscillations in X-ray absorption spectroscopy. Due to the EELS characteristic, the Fourier analysis of EXELFS oscillations appears as a promising technique for the characterization of composite materials, the major constituents of which are low Z elements. Using EXELFS, we have developed a microstructural study of carbon fibers. This analysis concerns the carbon K edge, which appears in the spectra at 285 eV. The purpose of the paper is to compare the local short range order, determined by this way in the case of Courtauld HTS and P100 ex-polyacrylonitrile carbon fibers, which are high tensile strength (HTS) and high modulus (HM) fibers respectively.


Author(s):  
Zhixian Wang ◽  
Pinjin Zhu ◽  
Jianhe Sun ◽  
Xuezheng Song

Hearing research is important not only for clinical, professional and military medicine, but also for toxicology, gerontology and genetics. Ultrastructure of the cochlea attracts much attention of electron microscopists, (1―3) but the research lags far behind that of the other parts of the organnism. On the basis of careful microdissection, technical improvment and accurate observation, we have got some new findings which have not been reported in the literature.We collected four cochleas from human corpses. Temporal bones dissected 1 h after death and cochleas perfused with fixatives 4 h after death were good enough in terms of preservation of fine structures. SEM:The apical surface of OHCs (Outer hair cells) and DTs (Deiters cells) is narrower than that of IPs (Inner pillar cells). The mosaic configuration of the reticular membrane is not typical. The stereocilia of IHCs (Inner hair cells) are not uniform and some kinocilia could be seen on the OHCs in adults. The epithelial surface of RM (Reissner’s membrane) is not smooth and no mesh could be seen on the mesothelial surface of RM. TEM.


Author(s):  
David R. Veblen

Extended defects and interfaces control many processes in rock-forming minerals, from chemical reactions to rock deformation. In many cases, it is not the average structure of a defect or interface that is most important, but rather the structure of defect terminations or offsets in an interface. One of the major thrusts of high-resolution electron microscopy in the earth sciences has been to identify the role of defect fine structures in reactions and to determine the structures of such features. This paper will review studies using HREM and image simulations to determine the structures of defects in silicate and oxide minerals and present several examples of the role of defects in mineral chemical reactions. In some cases, the geological occurrence can be used to constrain the diffusional properties of defects.The simplest reactions in minerals involve exsolution (precipitation) of one mineral from another with a similar crystal structure, and pyroxenes (single-chain silicates) provide a good example. Although conventional TEM studies have led to a basic understanding of this sort of phase separation in pyroxenes via spinodal decomposition or nucleation and growth, HREM has provided a much more detailed appreciation of the processes involved.


1997 ◽  
Vol 7 (C2) ◽  
pp. C2-217-C2-218
Author(s):  
Y. Aïfa ◽  
B. Poumellec ◽  
V. Jeanne-Rose ◽  
R. Cortes ◽  
R. V. Vedrinskii ◽  
...  
Keyword(s):  

2015 ◽  
Vol 135 (9) ◽  
pp. 515-521
Author(s):  
Yu-ichi Hayashi ◽  
Naofumi Homma ◽  
Takaaki Mizuki ◽  
Takafumi Aoki ◽  
Hideaki Sone

2004 ◽  
Vol 124 (2) ◽  
pp. 321-326 ◽  
Author(s):  
Toshie Takeuchi ◽  
Takafumi Nakagawa ◽  
Mitsuru Tsukima ◽  
Kenichi Koyama ◽  
Nobumoto Tohya ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document