Spectral characteristics of sea snot reflectance observed from satellites: Implications for remote sensing of marine debris

2022 ◽  
Vol 269 ◽  
pp. 112842
Author(s):  
Chuanmin Hu ◽  
Lin Qi ◽  
Yuyuan Xie ◽  
Shuai Zhang ◽  
Brian B. Barnes
Forests ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 76
Author(s):  
Yahui Guo ◽  
Jing Zeng ◽  
Wenxiang Wu ◽  
Shunqiang Hu ◽  
Guangxu Liu ◽  
...  

Timely monitoring of the changes in coverage and growth conditions of vegetation (forest, grass) is very important for preserving the regional and global ecological environment. Vegetation information is mainly reflected by its spectral characteristics, namely, differences and changes in green plant leaves and vegetation canopies in remote sensing domains. The normalized difference vegetation index (NDVI) is commonly used to describe the dynamic changes in vegetation, but the NDVI sequence is not long enough to support the exploration of dynamic changes due to many reasons, such as changes in remote sensing sensors. Thus, the NDVI from different sensors should be scientifically combined using logical methods. In this study, the Global Inventory Modeling and Mapping Studies (GIMMS) NDVI from the Advanced Very High Resolution Radiometer (AVHRR) and Moderate-resolution Imaging Spectroradiometer (MODIS) NDVI are combined using the Savitzky–Golay (SG) method and then utilized to investigate the temporal and spatial changes in the vegetation of the Ruoergai wetland area (RWA). The dynamic spatial and temporal changes and trends of the NDVI sequence in the RWA are analyzed to evaluate and monitor the growth conditions of vegetation in this region. In regard to annual changes, the average annual NDVI shows an overall increasing trend in this region during the past three decades, with a linear trend coefficient of 0.013/10a, indicating that the vegetation coverage has been continuously improving. In regard to seasonal changes, the linear trend coefficients of NDVI are 0.020, 0.021, 0.004, and 0.004/10a for spring, summer, autumn, and winter, respectively. The linear regression coefficient between the gross domestic product (GDP) and NDVI is also calculated, and the coefficients are 0.0024, 0.0015, and 0.0020, with coefficients of determination (R2) of 0.453, 0.463, and 0.444 for Aba, Ruoergai, and Hongyuan, respectively. Thus, the positive correlation coefficients between the GDP and the growth of NDVI may indicate that increased societal development promotes vegetation in some respects by resulting in the planting of more trees or the promotion of tree protection activities. Through the analysis of the temporal and spatial NDVI, it can be assessed that the vegetation coverage is relatively large and the growth condition of vegetation in this region is good overall.


Weed Science ◽  
2004 ◽  
Vol 52 (4) ◽  
pp. 492-497 ◽  
Author(s):  
E. Raymond Hunt ◽  
James E. McMurtrey ◽  
Amy E. Parker Williams ◽  
Lawrence A. Corp

Leafy spurge can be detected during flowering with either aerial photography or hyperspectral remote sensing because of the distinctive yellow-green color of the flower bracts. The spectral characteristics of flower bracts and leaves were compared with pigment concentrations to determine the physiological basis of the remote sensing signature. Compared with leaves of leafy spurge, flower bracts had lower reflectance at blue wavelengths (400 to 500 nm), greater reflectance at green, yellow, and orange wavelengths (525 to 650 nm), and approximately equal reflectances at 680 nm (red) and at near-infrared wavelengths (725 to 850 nm). Pigments from leaves and flower bracts were extracted in dimethyl sulfoxide, and the pigment concentrations were determined spectrophotometrically. Carotenoid pigments were identified using high-performance liquid chromatography. Flower bracts had 84% less chlorophylla, 82% less chlorophyllb, and 44% less total carotenoids than leaves, thus absorptance by the flower bracts should be less and the reflectance should be greater at blue and red wavelengths. The carotenoid to chlorophyll ratio of the flower bracts was approximately 1:1, explaining the hue of the flower bracts but not the value of reflectance. The primary carotenoids were lutein, β-carotene, and β-cryptoxanthin in a 3.7:1.5:1 ratio for flower bracts and in a 4.8:1.3:1 ratio for leaves, respectively. There was 10.2 μg g−1fresh weight of colorless phytofluene present in the flower bracts and none in the leaves. The fluorescence spectrum indicated high blue, red, and far-red emission for leaves compared with flower bracts. Fluorescent emissions from leaves may contribute to the higher apparent leaf reflectance in the blue and red wavelength regions. The spectral characteristics of leafy spurge are important for constructing a well-documented spectral library that could be used with hyperspectral remote sensing.


2013 ◽  
Vol 726-731 ◽  
pp. 4682-4685 ◽  
Author(s):  
Jie Ying Xiao ◽  
Na Ji ◽  
Xing Li

There are a great number of index methods used to extract impervious surface from satellite images. However, these indices are not robust enough to detect steel framed roof due to the diversity of impervious materials. The extraction of steel framed roof information by remote sensing technology is becoming increasingly important because of its environmental and socio-economic significance. A new index, Normalized Difference Steel framed roof Index (NDSI) is proposed to extract steel framed roof surface information from TM images. The NDSI was created based on its spectral characteristics of TM image and the steel framed roof information can be extracted fast by NDSI threshold method. Additionally, Shijiazhuang city, which has experienced rapid urbanization, was chosen as the study area. And the classification results show that the new index NDSI can effectively extract steel framed roof information with higher accuracy.


Author(s):  
Yi-Ta Hsieh ◽  
Shou-Tsung Wu ◽  
Chaur-Tzuhn Chen ◽  
Jan-Chang Chen

The shadows in optical remote sensing images are regarded as image nuisances in numerous applications. The classification and interpretation of shadow area in a remote sensing image are a challenge, because of the reduction or total loss of spectral information in those areas. In recent years, airborne multispectral aerial image devices have been developed 12-bit or higher radiometric resolution data, including Leica ADS-40, Intergraph DMC. The increased radiometric resolution of digital imagery provides more radiometric details of potential use in classification or interpretation of land cover of shadow areas. Therefore, the objectives of this study are to analyze the spectral properties of the land cover in the shadow areas by ADS-40 high radiometric resolution aerial images, and to investigate the spectral and vegetation index differences between the various shadow and non-shadow land covers. According to research findings of spectral analysis of ADS-40 image: (i) The DN values in shadow area are much lower than in nonshadow area; (ii) DN values received from shadowed areas that will also be affected by different land cover, and it shows the possibility of land cover property retrieval as in nonshadow area; (iii) The DN values received from shadowed regions decrease in the visible band from short to long wavelengths due to scattering; (iv) The shadow area NIR of vegetation category also shows a strong reflection; (v) Generally, vegetation indexes (NDVI) still have utility to classify the vegetation and non-vegetation in shadow area. The spectral data of high radiometric resolution images (ADS-40) is potential for the extract land cover information of shadow areas.


Data ◽  
2021 ◽  
Vol 6 (10) ◽  
pp. 108
Author(s):  
Carmine Gambardella ◽  
Rosaria Parente ◽  
Alessandro Ciambrone ◽  
Marialaura Casbarra

Integrating the representation of the territory, through airborne remote sensing activities with hyperspectral and visible sensors, and managing complex data through dimensionality reduction for the identification of cannabis plantations, in Albania, is the focus of the research proposed by the multidisciplinary group of the Benecon University Consortium. In this study, principal components analysis (PCA) was used to remove redundant spectral information from multiband datasets. This makes it easier to identify the most prevalent spectral characteristics in most bands and those that are specific to only a few bands. The survey and airborne monitoring by hyperspectral sensors is carried out with an Itres CASI 1500 sensor owned by Benecon, characterized by a spectral range of 380–1050 nm and 288 configurable channels. The spectral configuration adopted for the research was developed specifically to maximize the spectral separability of cannabis. The ground resolution of the georeferenced cartographic data varies according to the flight planning, inserted in the aerial platform of an Italian Guardia di Finanza’s aircraft, in relation to the orography of the sites under investigation. The geodatabase, wherein the processing of hyperspectral and visible images converge, contains ancillary data such as digital aeronautical maps, digital terrain models, color orthophoto, topographic data and in any case a significant amount of data so that they can be processed synergistically. The goal is to create maps and predictive scenarios, through the application of the spectral angle mapper algorithm, of the cannabis plantations scattered throughout the area. The protocol consists of comparing the spectral data acquired with the CASI1500 airborne sensor and the spectral signature of the cannabis leaves that have been acquired in the laboratory with ASD Fieldspec PRO FR spectrometers. These scientific studies have demonstrated how it is possible to achieve ex ante control of the evolution of the phenomenon itself for monitoring the cultivation of cannabis plantations.


2013 ◽  
Vol 448-453 ◽  
pp. 1066-1071
Author(s):  
Li Jun Yang ◽  
Ming Fei Wu ◽  
Yun Hong Zhu

Based on spectrometry, the remote sensing inversion researches of the surface tidal flat moisture are conducted in combination with spectral values measured in the field and moisture measured in the laboratory. Firstly, the remote sensing images are preprocessed, including geometric correction, atmospheric correction and image enhancement. Then, the spectral characteristics of typical ground objects are analyzed to partition the whole image and separate the bare tidal flats. At last, TM5 wave band and exponential model are determined to be the best wave band and optimal model for the inversion of the bare tidal flat moisture. The experiment shows: (1)This method can help to improve the accuracy of the surface tidal flat moisture inversion, with the maximum error of moisture inversion is 3%, the relative error is 7.1% and the average relative error is 6.5%. (2)The surface tidal flat moisture is of evident gradient distribution features, which can be used as basis of tidal flat topographic survey.


2020 ◽  
Vol 12 (24) ◽  
pp. 4115
Author(s):  
Xiaoli Li ◽  
Jinsong Chen ◽  
Longlong Zhao ◽  
Shanxin Guo ◽  
Luyi Sun ◽  
...  

The spatial fragmentation of high-resolution remote sensing images makes the segmentation algorithm put forward a strong demand for noise immunity. However, the stronger the noise immunity, the more serious the loss of detailed information, which easily leads to the neglect of effective characteristics. In view of the difficulty of balancing the noise immunity and effective characteristic retention, an adaptive distance-weighted Voronoi tessellation technology is proposed for remote sensing image segmentation. The distance between pixels and seed points in Voronoi tessellation is established by the adaptive weighting of spatial distance and spectral distance. The weight coefficient used to control the influence intensity of spatial distance is defined by a monotone decreasing function. Following the fuzzy clustering framework, a fuzzy segmentation model with Kullback–Leibler (KL) entropy regularization is established by using multivariate Gaussian distribution to describe the spectral characteristics and Markov Random Field (MRF) to consider the neighborhood effect of sub-regions. Finally, a series of parameter optimization schemes are designed according to parameter characteristics to obtain the optimal segmentation results. The proposed algorithm is validated on many multispectral remote sensing images with five comparing algorithms by qualitative and quantitative analysis. A large number of experiments show that the proposed algorithm can overcome the complex noise as well as better ensure effective characteristics.


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Yu Wang ◽  
Xiaofei Wang ◽  
Junfan Jian

Landslides are a type of frequent and widespread natural disaster. It is of great significance to extract location information from the landslide in time. At present, most articles still select single band or RGB bands as the feature for landslide recognition. To improve the efficiency of landslide recognition, this study proposed a remote sensing recognition method based on the convolutional neural network of the mixed spectral characteristics. Firstly, this paper tried to add NDVI (normalized difference vegetation index) and NIRS (near-infrared spectroscopy) to enhance the features. Then, remote sensing images (predisaster and postdisaster images) with same spatial information but different time series information regarding landslide are taken directly from GF-1 satellite as input images. By combining the 4 bands (red + green + blue + near-infrared) of the prelandslide remote sensing images with the 4 bands of the postlandslide images and NDVI images, images with 9 bands were obtained, and the band values reflecting the changing characteristics of the landslide were determined. Finally, a deep learning convolutional neural network (CNN) was introduced to solve the problem. The proposed method was tested and verified with remote sensing data from the 2015 large-scale landslide event in Shanxi, China, and 2016 large-scale landslide event in Fujian, China. The results showed that the accuracy of the method was high. Compared with the traditional methods, the recognition efficiency was improved, proving the effectiveness and feasibility of the method.


2020 ◽  
Vol 6 (4) ◽  
pp. 2487-2493 ◽  
Author(s):  
Hazem T. Abd El-Hamid ◽  
Guan Hong

Abstract Soil salinization affects negatively on agricultural productivity in the semiarid region of Ningxia. In this study, the performance of inversion model to determine soil salinization was assessed using some analysis and reflectance of wavelength. About 42 vegetation samples and 42 soil samples were collected for model extraction. Hyper-spectral data processing method was used to analyze spectral characteristics of different levels of salinization area vegetation. Spectral data were transformed in 16 different approaches, including root mean squares, logarithm, inversion logarithm, and first-order differentiation. After the transformation, the obtained soil and vegetation characteristics spectra correlate well with soil salt content, built soil index, and many vegetation indices. Nonlinear regression was employed to establish soil salinization remote sensing monitoring model. By comparing various spectral transformations, the first-order differential of soil spectral was the most sensitive to soil salinization degrees. The model of the current research was based on salinity index (SI) and improved soil-adjusted vegetation index (MSAVI). The correlation between simulated values and measured values was 0.758. Therefore, remote sensing monitoring derived from MSAVI–SI can greatly improve the dynamic and periodical monitoring of soil salinity in the study area.


2016 ◽  
Vol 52 (9) ◽  
pp. 872-875 ◽  
Author(s):  
M. G. Vasil’ev ◽  
A. M. Vasil’ev ◽  
V. V. Golovanov ◽  
A. A. Shelyakin

Sign in / Sign up

Export Citation Format

Share Document