Fallopian tube stem cell medium of porcine and bovine: In vitro regenerative effect on maturation and parthenogenesis of porcine oocytes

Author(s):  
Kang-You Liu ◽  
Kun-Yi Lin ◽  
Tzu-Yi Lin ◽  
Ling-Yien Hii ◽  
Hui-Sen Tseng ◽  
...  
Zygote ◽  
2015 ◽  
Vol 24 (2) ◽  
pp. 236-244 ◽  
Author(s):  
Qing-Shan Gao ◽  
Long Jin ◽  
Suo Li ◽  
Hai-Ying Zhu ◽  
Qing Guo ◽  
...  

SummaryWe investigated the effect of human induced pluripotent stem cell (hiPS) medium on porcine somatic cell nuclear transfer and bovine in vitro fertilized early blastocysts, in comparison with North Carolina State University (NCSU)-37 medium and in vitro culture (IVC)-II medium. After 2 days of culture, the diameter of the portion of the blastocyst that was extruded from the zona pellucid dramatically differed between porcine blastocysts cultured in hiPS medium and those cultured in NCSU-37 medium (221.47 ± 38.94 μm versus 481.87 ± 40.61 μm, P < 0.01). Moreover, the diameter of the portion of the blastocyst significantly differed between bovine blastocysts cultured in hiPS medium and those cultured in IVC-II medium (150.30 ± 29.49 μm versus 195.58 ± 41.59 μm, P < 0.01). Furthermore, the total number of cells per porcine and bovine blastocyst was more than two-fold higher in blastocysts cultured in hiPS medium than in those cultured in NCSU-37 medium (44.33 ± 5.28 and 143.33 ± 16.05, P < 0.01) or IVC-II medium (172.12 ± 45.08 and 604.83 ± 242.64, P < 0.01), respectively. These results indicate that hiPS medium markedly improves the quality of porcine and bovine blastocysts.


2021 ◽  
Vol 22 (4) ◽  
pp. 2169
Author(s):  
Kohya Uematsu ◽  
Takashi Ushiki ◽  
Hajime Ishiguro ◽  
Riuko Ohashi ◽  
Suguru Tamura ◽  
...  

Cell culture media influence the characteristics of human osteogenic periosteal sheets. We have previously found that a stem cell medium facilitates growth and collagen matrix formation in vitro and osteogenesis in vivo. However, it has not yet been demonstrated which culture medium is superior for osteoclastogenesis, a prerequisite for reconstruction of normal bone metabolic basis. To address this question, we compared chemotaxis and osteoclastogenesis in tissue-engineered periosteal sheets (TPSs) prepared with two types of culture media. Periosteal tissues obtained from adult volunteers were expanded with the conventional Medium 199 or with the stem cell medium, MesenPRO. Hematopoietic enhanced-green-fluorescent-protein (EGFP)-nude mice were prepared by γ-irradiation of Balb/c nu/nu mice and subsequent transplantation of bone marrow cells from CAG-EGFP C57BL/6 mice. TPSs were implanted subcutaneously into the chimeric mice and retrieved after intervals for immunohistopathological examination. EGFP+ cells were similarly recruited to the implantation site in both the TPSs prepared, whereas the distribution of CD11b+ cells was significantly lower in the TPS prepared with the stem cell medium. Instead, osteoclastogenesis was higher in the TPS prepared with the stem cell medium than in the one prepared with the conventional medium. These findings suggest that the stem cell medium is preferable for the preparation of more functional TPSs.


2008 ◽  
Vol 24 (3-4) ◽  
pp. E28 ◽  
Author(s):  
Anne-Marie Bleau ◽  
Brian M. Howard ◽  
Lauren A. Taylor ◽  
Demirkan Gursel ◽  
Jeffrey P. Greenfield ◽  
...  

Object Brain tumor stem cells (TSCs) hypothetically drive the malignant phenotype of glioblastoma multiforme (GBM), and evidence suggests that a better understanding of these TSCs will have profound implications for treating gliomas. When grown in vitro, putative TSCs grow as a solid sphere, making their subsequent characterization, particularly the cells within the center of the sphere, difficult. Therefore, the purpose of this study was to develop a new method to better understand the proteomic profile of the entire population of cells within a sphere. Methods Tumor specimens from patients with confirmed GBM and glioma models in mice were mechanically and enzymatically dissociated and grown in traditional stem cell medium to generate neurospheres. The neurospheres were then embedded in freezing medium, cryosectioned, and analyzed with immunofluorescence. Results By sectioning neurospheres as thinly as 5 μm, the authors overcame many of the problems associated with immunolabeling whole neurospheres, such as antibody penetration into the core of the sphere and intense background fluorescence that obscures the specificity of immunoreactivity. Moreover, the small quantity of material required and the speed with which this cryosectioning and immunolabeling technique can be performed make it an attractive tool for the rapid assessment of TSC character. Conclusions This study is the first to show that cryosectioning of neurospheres derived from glioma models in mice and GBM in humans is a feasible method of better defining the stem cell profile of a glioma.


2015 ◽  
Vol 27 (1) ◽  
pp. 259
Author(s):  
T. Tharasanit ◽  
N. Tiptanavattana ◽  
P. Phakdeedindan ◽  
M. Techakumphu

Embryonic stem (ES) cells are pluripotent cells that can differentiate into all 3 germ layers, including endoderm, mesoderm, and ectoderm. Embryonic stem cells are generally divided into 2 types, naïve and primed-state, depending on their signaling pathways. Domestic cat is a useful animal model for the study of human diseases because many genetic and infectious diseases in the cat are analogous with similar aetiology to human diseases. The cat can also be used as a research model for reproductive physiology and conservation of wild felids. Until recently, information on establishment of feline ES cells is limited. The objectives of this study were to isolate cat ES cells from in vitro-produced blastocysts and to examine the effect of different concentrations of basic fibroblast growth factor (bFGF) on the expression of pluripotent genes. Inner cell masses (ICM) from cat blastocysts (n = 40, Day 7 after in vitro fertilization) that were matured, fertilized, and cultured entirely in vitro, were isolated by immunosurgery and plated on mitmycin-treated mouse embryonic fibroblasts. The ICM (n = 20) were then cultured in embryonic stem cell medium containing 1000 IU mL–1 of leukemia inhibitory factor (LIF) and different bFGF concentrations (0, 4, 10, and 20 ng mL–1). The ICM outgrowths at 7 days postplating were collected and analysed for expression of pluripotent genes (SOX-2, OCT-4, and NANOG). Results showed that transcription levels of all 3 pluripotent genes were higher in ICM outgrowths cultured in 20 ng mL–1 of bFGF compared with the lower concentrations. For isolation of ES cells, ICM (n = 20) were cultured in embryonic stem cell medium supplemented with 1000 IU mL–1 of LIF and 20 ng mL–1 of bFGF due to the results obtained from the above experiment. Established ES cells were characterised by detecting alkaline phosphatase (AP) activity and expression of ES markers (SOX-2, OCT-4, SSEA-4) at protein level, and karyotyped at passage 20 and 40. In vitro differentiation into embryoid bodies (EB) was induced by the hanging drop technique, and EB samples (n = 5 for each time point) were tested for the expression of TTR, AFP, T (Bracyury), NKX2.5, MAP-2, and NESTIN genes at 0, 7, and 14 days of culture. A total of 3 ES-like cell lines were established with a typical ES morphology, such as a well-defined colony, a large nucleus to cytoplasm ratio with 1 to 2 prominent nucleoli. The 3 ES-like cell lines were passaged up to 40 times with a normal diploid karyotype (n = 38). They were strongly positive for AP, SOX-2, OCT-4, and SSEA-4. Following EB culture, cell aggregation and cystic-like structure were observed. The EB samples also expressed all differentiation markers. This study reports that feline ES-like cell lines can be generated from in vitro-produced feline blastocysts. The ES cell lines can be repeatedly passaged indicating self-renewal ability, and gene expression of the EB demonstrates cellular differentiation into all 3 germ layers.


2014 ◽  
Vol 45 (5) ◽  
pp. 1857-1866 ◽  
Author(s):  
YUSAKU WATANABE ◽  
KIYOSHI YOSHIMURA ◽  
KOICHI YOSHIKAWA ◽  
RYOICHI TSUNEDOMI ◽  
YOSHITARO SHINDO ◽  
...  

2017 ◽  
Author(s):  
George P. Albaugh ◽  
Sudhir K. Dutta ◽  
Vasantha Iyengar ◽  
Samina Shami ◽  
Althaf Lohani ◽  
...  

ABSTRACTUnderstanding the nature of cell surface markers on exfoliated colonic cells is a crucial step in establishing criteria for a normally functioning mucosa. We have found that colonic cells isolated from stool samples (SCSR-010 Fecal Cell Isolation Kit, NonInvasive Technologies, Elkridge, MD), preserved at room temperature for up to one week, with viability of >85% and low levels of apoptosis (8% - 10%) exhibit two distinct cell size subpopulations, in the 2.5μM– 5.0 μM and 5.0μM-8.0μM range. In addition to IgA, about 60% of the cells expressed a novel heterodimeric IgA/IgG immunoglobulin that conferred a broad-spectrum cell mediated cytotoxicity against tumor cells. In a cohort of 58 subjects the exclusive absence of this immunoglobulin in two African-Americans was suggestive of a germline deletion. Serial cultures in stem cell medium retained the expression of this heterodimer. Since a majority of the cystic cells expressed the stem cell markers Lgr5 and Musashi-1 we termed these cells as gastrointestinal progenitor stem cells (GIP-C**). CXCR-4, the cytokine co-receptor for HIV was markedly expressed. These cells also expressed CD20, IgA, IgG, CD45, and COX-2. We assume that they originated from mature columnar epithelium by dedifferentiation. Our observations indicate that we have a robust noninvasive method to study mucosal pathophysiology and a direct method to create a database for applications in regenerative medicine.


2016 ◽  
Vol 57 (7) ◽  
pp. 3522 ◽  
Author(s):  
Steven Roth ◽  
John C. Dreixler ◽  
Biji Mathew ◽  
Irina Balyasnikova ◽  
Jacob R. Mann ◽  
...  

2013 ◽  
Vol 47 (4) ◽  
pp. 330-337 ◽  
Author(s):  
Neza Podergajs ◽  
Narve Brekka ◽  
Bernhard Radlwimmer ◽  
Christel Herold-Mende ◽  
Krishna M. Talasila ◽  
...  

Abstract Background. Patient-derived glioblastoma (GBM) stem-like cells (GSCs) represent a valuable model for basic and therapeutic research. GSCs are usually propagated in serum-free Neural Basal medium supplemented with bFGF and EGF. Yet, the exact influence of these growth factors on GSCs is still unclear. Recently it was suggested that GBM stemlike cells with amplified EGFR should be cultured in stem cell medium without EGF, as the presence of EGF induced rapid loss of EGFR amplification. However, patient biopsies are usually taken into culture before their genomic profiles are defined. Thus, an important question remains whether GBM cells without EGFR amplification also can be cultured in stem cell medium without EGF. Meterials and methods. To address this question, we used two heterogeneous glioblastoma GSC lines (NCH421k and NCH644) that lack EGFR amplification. Results. Although both cell lines showed very low EGFR expression under standard growth conditions, bFGF stimulation induced higher expression of EGFR in NCH644. In both cell lines, expression of the stem cell markers nestin and CD133 was higher upon stimulation with bFGF compared to EGF. Importantly, bFGF stimulated the growth of both cell lines, whereas EGF had no effect. We verified that the growth stimulation by bFGF was either mediated by proliferation (NCH421k) or resistance to apoptosis (NCH644). Conclusions. We demonstrate that GSC cultures without EGFR amplification can be maintained and expanded with bFGF, while the addition of EGF has no significant effect and therefore can be omitted.


Sign in / Sign up

Export Citation Format

Share Document