scholarly journals Osteoclastogenic Potential of Tissue-Engineered Periosteal Sheet: Effects of Culture Media on the Ability to Recruit Osteoclast Precursors

2021 ◽  
Vol 22 (4) ◽  
pp. 2169
Author(s):  
Kohya Uematsu ◽  
Takashi Ushiki ◽  
Hajime Ishiguro ◽  
Riuko Ohashi ◽  
Suguru Tamura ◽  
...  

Cell culture media influence the characteristics of human osteogenic periosteal sheets. We have previously found that a stem cell medium facilitates growth and collagen matrix formation in vitro and osteogenesis in vivo. However, it has not yet been demonstrated which culture medium is superior for osteoclastogenesis, a prerequisite for reconstruction of normal bone metabolic basis. To address this question, we compared chemotaxis and osteoclastogenesis in tissue-engineered periosteal sheets (TPSs) prepared with two types of culture media. Periosteal tissues obtained from adult volunteers were expanded with the conventional Medium 199 or with the stem cell medium, MesenPRO. Hematopoietic enhanced-green-fluorescent-protein (EGFP)-nude mice were prepared by γ-irradiation of Balb/c nu/nu mice and subsequent transplantation of bone marrow cells from CAG-EGFP C57BL/6 mice. TPSs were implanted subcutaneously into the chimeric mice and retrieved after intervals for immunohistopathological examination. EGFP+ cells were similarly recruited to the implantation site in both the TPSs prepared, whereas the distribution of CD11b+ cells was significantly lower in the TPS prepared with the stem cell medium. Instead, osteoclastogenesis was higher in the TPS prepared with the stem cell medium than in the one prepared with the conventional medium. These findings suggest that the stem cell medium is preferable for the preparation of more functional TPSs.

2010 ◽  
Vol 119 (11) ◽  
pp. 805-810 ◽  
Author(s):  
Satoshi Ohno ◽  
Shigeru Hirano ◽  
Ichiro Tateya ◽  
Shin-Ichi Kanemaru ◽  
Hiroo Umeda ◽  
...  

Objectives: Treatment of vocal fold scarring remains a therapeutic challenge. Our group previously reported the efficacy of treating injured vocal folds by implantation of bone marrow—derived stromal cells containing mesenchymal stem cells. Appropriate scaffolding is necessary for the stem cell implant to achieve optimal results. Terudermis is an atelocollagen sponge derived from calf dermis. It has large pores that permit cellular entry and is degraded in vivo. These characteristics suggest that this material may be a good candidate for use as scaffolding for implantation of cells. The present in vitro study investigated the feasibility of using Terudermis as such a scaffold. Methods: Bone marrow—derived stromal cells were obtained from GFP (green fluorescent protein) mouse femurs. The cells were seeded into Terudermis and incubated for 5 days. Their survival, proliferation, and expression of extracellular matrix were examined. Results: Bone marrow—derived stromal cells adhered to Terudermis and underwent significant proliferation. Immunohistochemical examination demonstrated that adherent cells were positive for expression of vimentin, desmin, fibronectin, and fsp1 and negative for beta III tubulin. These findings indicate that these cells were mesodermal cells and attached to the atelocollagen fibers biologically. Conclusions: The data suggest that Terudermis may have potential as stem cell implantation scaffolding for the treatment of scarred vocal folds.


Zygote ◽  
2015 ◽  
Vol 24 (2) ◽  
pp. 236-244 ◽  
Author(s):  
Qing-Shan Gao ◽  
Long Jin ◽  
Suo Li ◽  
Hai-Ying Zhu ◽  
Qing Guo ◽  
...  

SummaryWe investigated the effect of human induced pluripotent stem cell (hiPS) medium on porcine somatic cell nuclear transfer and bovine in vitro fertilized early blastocysts, in comparison with North Carolina State University (NCSU)-37 medium and in vitro culture (IVC)-II medium. After 2 days of culture, the diameter of the portion of the blastocyst that was extruded from the zona pellucid dramatically differed between porcine blastocysts cultured in hiPS medium and those cultured in NCSU-37 medium (221.47 ± 38.94 μm versus 481.87 ± 40.61 μm, P < 0.01). Moreover, the diameter of the portion of the blastocyst significantly differed between bovine blastocysts cultured in hiPS medium and those cultured in IVC-II medium (150.30 ± 29.49 μm versus 195.58 ± 41.59 μm, P < 0.01). Furthermore, the total number of cells per porcine and bovine blastocyst was more than two-fold higher in blastocysts cultured in hiPS medium than in those cultured in NCSU-37 medium (44.33 ± 5.28 and 143.33 ± 16.05, P < 0.01) or IVC-II medium (172.12 ± 45.08 and 604.83 ± 242.64, P < 0.01), respectively. These results indicate that hiPS medium markedly improves the quality of porcine and bovine blastocysts.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 1293-1293
Author(s):  
Hong Qian ◽  
Sten Eirik W. Jacobsen ◽  
Marja Ekblom

Abstract Within the bone marrow environment, adhesive interactions between stromal cells and extracellular matrix molecules are required for stem and progenitor cell survival, proliferation and differentiation as well as their transmigration between bone marrow (BM) and the circulation. This regulation is mediated by cell surface adhesion receptors. In experimental mouse stem cell transplantation models, several classes of cell adhesion receptors have been shown to be involved in the homing and engraftment of stem and progenitor cells in BM. We have previously found that integrin a6 mediates human hematopoietic stem and progenitor cell adhesion to and migration on its specific ligands, laminin-8 and laminin-10/11 in vitro (Gu et al, Blood, 2003; 101:877). Using FACS analysis, the integrin a6 chain was now found to be ubiquitously (>95%) expressed in mouse hematopoietic stem and progenitor cells (lin−Sca-1+c-Kit+, lin−Sca-1+c-Kit+CD34+) both in adult bone marrow and in fetal liver. In vitro, about 70% of mouse BM lin−Sca-1+c-Kit+ cells adhered to laminin-10/11 and 40% adhered to laminin-8. This adhesion was mediated by integrin a6b1 receptor, as shown by functional blocking monoclonal antibodies. We also used a functional blocking monoclonal antibody (GoH3) against integrin a6 to analyse the role of the integrin a6 receptor for the in vivo homing of hematopoietic stem and progenitor cells. We found that the integrin a6 antibody inhibited the homing of bone marrow progenitors (CFU-C) into BM of lethally irradiated recipients. The number of homed CFU-C was reduced by about 40% as compared to cells incubated with an isotype matched control antibody. To study homing of long-term repopulating stem cells (LTR), antibody treated bone marrow cells were first injected intravenously into lethally irradiated primary recipients. After three hours, bone marrow cells of the primary recipients were analysed by competitive repopulation assay in secondary recipients. Blood analysis 16 weeks after transplantation revealed an 80% reduction of stem cell activity of integrin a6 antibody treated cells as compared to cells treated with control antibody. These results suggest that integrin a6 plays an important role for hematopoietic stem and progenitor cell homing in vivo.


Blood ◽  
1994 ◽  
Vol 84 (2) ◽  
pp. 421-432 ◽  
Author(s):  
D DiGiusto ◽  
S Chen ◽  
J Combs ◽  
S Webb ◽  
R Namikawa ◽  
...  

Experimentation on human stem cells is hampered by the relative paucity of this population and by the lack of assays identifying multilineage differentiation, particularly along the lymphoid lineages. In our current study, phenotypic analysis of low-density fetal bone marrow cells showed two distinct populations of CD34+ cells: those expressing a high density of CD34 antigen on their surface (CD34hi) and those expressing an intermediate level of CD34 antigen (CD34lo). Multiple tissues were used to characterize the in vitro and in vivo potential of these subsets and showed that only CD34hi cells support long-term B lymphopoiesis and myelopoiesis in vitro and mediate T, B, and myeloid repopulation of human tissues implanted into SCID mice. CD34lo cells repeatedly failed to provide long-term hematopoietic activity in vivo or in vitro. These results indicate that a simple fractionation based on well-defined CD34 antigen levels can be used to reproducibly isolate cells highly enriched for in vivo long-term repopulating activity and for multipotent progenitors, including T- and B-cell precursors. Additionally, given the limited variability in the results and the high correlation between in vitro and in vivo hematopoietic potential, we propose that the CD34hi population contains virtually all of the stem cell activity in fetal bone marrow and therefore is the population of choice for future studies in hematopoietic stem cell development and gene therapy.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 1337-1337
Author(s):  
Christine Victoria Ichim ◽  
Dzana Dervovic ◽  
David Koos ◽  
Marciano D. Reis ◽  
Alden Chesney ◽  
...  

Abstract The leukemia stem cell model suggests that elucidation of the genes that regulate growth ability within the leukemia cell hierarchy will have important clinical relevance. We showed that the expression of NR2F6 (EAR-2), is greater in clonogenic leukemia single cells than in leukemia cells that do not divide, and that this gene is over-expressed in patients with acute myeloid leukemia and myelodysplastic syndrome. In vivo, overexpression of EAR-2 using a retroviral vector in a chimeric mouse model leads to a condition that resembles myelodysplastic syndrome with hypercellular bone marrow, increased blasts, abnormal localization of immature progenitors, morphological dysplasia of the erythroid lineage and a competitive advantage over wild-type cells, that eventually leads to AML in a subset of the mice, or after secondary-transplantation. Interestingly, animals transplanted with bone marrow that over-expresses EAR-2 develop leukemia that is preceded by expansion of the stem cell compartment in the transplanted mice—suggesting that EAR-2 is an important regulator of hematopoietic stem cell differentiation. Here we report that over-expression of EAR-2 also has a profound effect on the differentiation of erythroid progenitor cells both in vitro and in vivo. Studies of the roles of EAR-2 in normal primary bone marrow cells in vitro showed that overexpression of EAR-2 profoundly impaired differentiation along the erythroid lineage. EAR-2 over-expressing bone marrow cells formed 40% fewer BFU-E colonies, but had greatly extended replating capacity in colony assays. While knockdown of EAR-2 increased the number of cells produced per BFU-E colony 300%. Normal mice transplanted with grafts of purified bone marrow cells that over-expressed EAR-2 developed a rapidly fatal leukemia characterized by pancytopenia, enlargement of the spleen, and infiltration of blasts into the spleen, liver and peripheral blood. Sick animals had profound reduction of peripheral blood cell counts, particularly anemia with a 55% reduction in hemoglobin levels. Anemia was evident even on gross inspection of the blood and the liver in EAR-2 overexpressing animals. Analysis of the leukemic cells revealed an erythroblastic morphology, with the immunophenotype lineageneg, CD71high, TER119med. Hence, we wondered weather EAR-2 caused leukemia by arresting erythroid progenitor cell differentiation. Examination of the bone marrow of pre-leukemic animals showed a four-fold increase in cells with a pro-erythroblastic immunophenotype (CD71highTER119med , region I), and a four-fold decrease in orthochromatophilic erythroblasts (CD71lowTER119high , region IV). We observed no change in the numbers of basophilic erythroblasts (CD71highTER119high , region II) or late basophilic and polychromatophilic erythroblasts (CD71medTER119high, region III). These data suggests that over-expression of EAR-2 blocks erythroid cell differentiation at the pro-erythroblastic stage. Since EAR-2 over-expressing recipients died within 4 week, we wanted to definitively test whether animals had compromised radioprotection. We showed that decreasing the size of the bone marrow graft, reduced survival of the EAR-2 over-expressing cohort by a week, but had no effect on control animals proving that EAR-2 over-expression has a profound effect on erythropoietic reconstitution in vivo. Mechanistically, we show that DNA binding is necessary for EAR-2 function, and that EAR-2 functions in an HDAC-dependent manner, regulating expression of several genes. Pre-leukemic pro-erythroblastic cells (CD71highTER119med) that over-expressed EAR-2 had lower expression of genes involved in erythroid differentiation such as GATA1, EBF1, inhibitor of NFKB (NFKBia), ETV6, CEBP/a, LMO2, and Nfe2, and increased expression of GATA2, GLI1, ID1 and PU.1 than GFP control pro-erythroblasts. These data establish that EAR-2 is a novel oncogene whose cellular function is to regulate terminal differentiation of erythroid cells at the proerythroblastic (CD71highTER119med) stage by deregulating gene expression necessary for erythroid differentiation. Disclosures Ichim: Entest BioMedical: Employment, Equity Ownership, Patents & Royalties, Research Funding. Koos:Entest BioMedical: Employment, Equity Ownership, Patents & Royalties, Research Funding.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 194-194 ◽  
Author(s):  
Lars U.W. Muller ◽  
Michael Milsom ◽  
Chad E. Harris ◽  
Jeff Bailey ◽  
David A. Williams

Abstract Fanconi anemia (FA) is amenable to genetic correction of hematopoietic stem cells (HSCs). However, as demonstrated in previous clinical gene therapy trials, successful extension of murine studies into human therapies is limited by low numbers of target HSC and poor engraftment of transduced FA HSC (Kelly et al., Mol Ther, 2007). To examine the potential biological consequences/benefits of shortened transduction we used a FA mouse model in which HSC are deficient and prone to excessive loss during in vitro manipulation. We applied a rapid transduction protocol (Mostoslavsky et al., Mol Ther, 2005) utilizing lentiviral vectors and demonstrate that this shortened transduction preserves engraftment of FA HSC to the level of C57BL/6 wt cells. Lin− Sca-1+ c-Kit+ bone marrow cells were isolated from Fanca−/− CD45.2 mice and underwent 4-hr rapid (RT) vs. 96-hr conventional (CT) transduction. An equivalent number of transduced cells were transplanted into lethally irradiated CD45.1 BoyJ mice. Analysis of engraftment chimerism three months post transplantation revealed a significantly higher level of engraftment in animals receiving RT vs. CT cells (90% +/− 14% vs. 26% +/− 31%, respectively, p=&lt;0.01). Rapid transduction also resulted in a significant reduction of engraftment failure (0/36 animals RT vs. 20/36 animals CT). Importantly--emphasizing the FA disease-specific stem cell phenotype, RT vs. CT of C57BL/6 wt cells was associated with no significant difference in engraftment of these cells (93% +/− 1.2% RT vs. 84 +/− 19% CT, p=0.33). Analysis of peripheral blood cells expressing the proviral enhanced green fluorescent protein (eGFP) reporter gene revealed a normal distribution of B-lymphocytes (B220), T-lymphocytes (CD3 epsilon), and granulocytes (MAC-1), indicating multi-lineage engraftment of gene modified cells. In spite of this engraftment advantage, transduction efficiency was low (&lt;30%) using RT. The 6-benzylguanine (6-BG) resistant P140K mutant of O6-methylguanine DNA methyltransferase (MGMTP140K) confers a selective advantage to tranduced HSC treated with alkylating drugs. Following RT with a MGMTP140K/ eGFP expressing lentivirus, 5/6 mice treated with 6-BG and the alkylating drug temozolomide showed a significant rise in the percentage of GFP reporter gene expression in peripheral blood. We extended this approach to the FA model by generating a tri-cistronic lentiviral vector expressing the FANCA cDNA, MGMTP140K, and eGFP. Despite modest in vivo gene marking with this vector, up to 37-fold selection (85% GFP-positive cells) was achieved following exposure of bone marrow of transplant recipients to 6-BG and the alkylating drug temozolomide in vitro. Concurrently, phenotypic correction of mitomycin C hypersensitivity of transduced Fanca−/− bone marrow cells was observed. These data suggest that RT improves stem cell engrafting capacity of FA stem cells in a relevant animal model of stem cell gene therapy. The combination of RT and in vivo selection may allow more successful reconstitution of the lympho-hematopoietic system in gene therapy applications.


Blood ◽  
1991 ◽  
Vol 78 (10) ◽  
pp. 2527-2533 ◽  
Author(s):  
RE Ploemacher ◽  
JP van der Sluijs ◽  
CA van Beurden ◽  
MR Baert ◽  
PL Chan

Abstract We have developed an in vitro clonal assay of murine hematopoietic precursor cells that form spleen colonies (CFU-S day 12) or produce in vitro clonable progenitors in the marrow (MRA cells) of lethally irradiated mice. The assay is essentially a long-term bone marrow culture in microtiter wells containing marrow-derived stromal “feeders” depleted for hematopoietic activity by irradiation. To test the validity of the assay as a quantitative in vitro stem cell assay, a series of unsorted and physically sorted bone marrow cells were simultaneously assayed in vivo and overlaid on the feeders in a range of concentrations, while frequencies of cells forming hematopoietic clones (cobblestone area forming cells, CAFC) were calculated by means of Poisson statistics. Linear regression analysis of the data showed high correlations between the frequency of CFU-S day 12 and CAFC day 10, and between MRA cells and CAFC day 28. A majority of MRA activity and CAFC day 28 was separable from CFU-S day 12 and CAFC day 10. This correlation study validates the CAFC system as a clonal assay facilitation both the quantitative assessment of a series of subsets in the hematopoietic stem cell hierarchy and the study of single long-term repopulating cells in vitro.


Blood ◽  
1976 ◽  
Vol 48 (2) ◽  
pp. 301-307 ◽  
Author(s):  
HM Pinedo ◽  
BA Chabner ◽  
DS Zaharko ◽  
JM Bull

Abstract The effects of constant exposure to high concentrations of methotrexate in vivo on the committed stem cell (CFU-C) were studied by in vitro culture of mouse bone marrow. Bone marrow samples were obstained from animals receiving a continuous infusion, and were cultured in a methotrexate-free semisolid gel system. The effects of methotrexate infusion on the pluripotent stem cell population (CFU-S) were studied as well. Constant exposure to 10(-5) M methotrexate produced a rapid decrease in total nucleated cells per femur, reaching 35% of control at 12 hr and remaining at approximately this level throughout 48 hr of drug infusion. A decrease in the number of both CFU-C and CFU-S per femur was observed, which paralleled the drop in nucleated cells during the first 24 hr. However, in contrast to an additional drop in the number of CFU-S, an increase of CFU-C number per femur was observed from 24 to 48 hr. These data indicated a self-limited cell kill of nucleated bone marrow cells, and suggested recruitment of CFU-C from the CFU-S pool between 24 and 48 hr of infusion despite continued methotrexate infusion.


Sign in / Sign up

Export Citation Format

Share Document