scholarly journals Corrigendum to ‘Dual packed bed adsorption of sulfur dioxide from surface modified hematite/III-ferric oxide: Characterization of the mass transfer zone’ [S. Afr. J. Chem. Eng. 33 (2020) 95–102]

Author(s):  
Albert Selvakumar Jeyapaul ◽  
Mahesh Ganesapillai
2006 ◽  
Vol 40 (12) ◽  
pp. 3996-4003 ◽  
Author(s):  
Ghinwa Naja ◽  
Bohumil Volesky

Author(s):  
Mohd Danish ◽  
Vijay Parthasarthy ◽  
Mohammed K. Al Mesfer

The rising CO2 concentration has prompted the quest of innovative tools to reduce its effect on the environment. A comparative adsorption study using sustainable low-cost date pits-derived activated carbon and molecular sieve has been carried out for CO2 separation. The adsorb ents were characterized for surface area and morphological properties. The outcomes of flow rate, temperature and initial adsorbate concentration on adsorption performance were examined. The process effectiveness was investigated by breakthrough time, adsorbate loading, efficiency, utilized bed height, mass transfer zone and utilization factor. The immensely steep adsorption response curves demonstrate acceptable utilization of adsorbent capability under breakthrough condition. The adsorbate loading 73.08 mg/g is achieved with an 0.938 column efficiency for developed porous activated carbon at 298 K. The reduced 1.20 cm length of mass transfer zone with enhanced capacity utilization factor equal 0.97 at 298 K with Cin = 5% signifies better adsorption performance for date pits-derived adsorbent. The findings recommend that produced activated carbon is greatly promising to adsorb CO2 in fixed bed column under continuous mode.


2020 ◽  
Vol 20 (06) ◽  
pp. 2050033
Author(s):  
YAO CHEN ◽  
XUEYE CHEN

In this paper, the monophasic catalytic reaction in the microreactor is studied. Several factors that may affect the catalytic reaction are discussed, including the pressure drop, the size of catalyst particles, and the channel structure. Finally, some important conclusions can be reached. The change of pressure drop has an effect on the reaction. For example, the C3H6 conversion rate is 62.88% when the pressure drop is 8[Formula: see text]atm, and the C3H6 conversion rate is 61.78% when the pressure drop is 11[Formula: see text]atm. The effect of the change particle radius is not obvious on the reaction. Enhancing the mixing of substances before entering the reaction domain is helpful to the catalytic reaction. There are different substances concentration in catalyst particles at different positions in microreactors. But from the surface to the inside of catalyst particles, the substances concentration has a clear change rule.


2020 ◽  
Vol 56 (12) ◽  
pp. 3243-3259
Author(s):  
Mohammed K. Al Mesfer ◽  
Mohd Danish ◽  
Ismat Hassan Ali ◽  
Mohammed Ilyas Khan

2020 ◽  

<p>The temperature, feed rate, length of mass transfer zone, utilization factor and partial pressure are the parameters considered for fixed bed sorption of CO2 from N2/CO2 mixture. The breakthrough time relies strongly on the temperature and feed rate. The prolonged breakthrough and saturation times have been realized for AC. The response curves of AC are vastly steep signifying the maximal utilization of bed capacity at the breakpoint. In general, the length of MTZ increases with raised temperature and feed flow rate. The capacity utilization factor reduces with raised temperature and feed flow rate. A utilization factor of 0.919 was determined for AC. The maximal capacity for CO2 reduces significantly with an increased temperature. The maximal capacities of 32.99 gm CO2/Kg was determined at a temperature of 298 K for AC. The capacity improves considerably with CO2 partial pressure and AC exhibited higher adsorption capacity compared to SG. The capacity improves considerably with increased feed rates and maximal capacity of 39.14 g CO2/Kg adsorbent was determined for AC at the feed rate of 8.33 x10-3 m3/sec. Owing to higher sorption capacity and utilization factor, the AC may be used for economical separation of CO2 from N2/CO2 mixture</p>


2016 ◽  
Vol 285 ◽  
pp. 236-242 ◽  
Author(s):  
Xiao-Hua Zheng ◽  
Guang-Wen Chu ◽  
De-Jia Kong ◽  
Yong Luo ◽  
Jing-Peng Zhang ◽  
...  

Polymers ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2345
Author(s):  
Ilse Paulina Verduzco-Navarro ◽  
Nely Rios-Donato ◽  
Carlos Federico Jasso-Gastinel ◽  
Álvaro de Jesús Martínez-Gómez ◽  
Eduardo Mendizábal

The removal of Cu(II) ions from aqueous solutions at a pH of 5.0 was carried out using fixed-bed columns packed with alginate-chitosan (Alg-Ch) or alginate-chitosan sulfate (Alg-ChS) hydrogel beads. The effect of the initial Cu(II) concentration, flow rate, pH, and height of the column on the amount of Cu removed by the column at the breakpoint and at the exhaustion point is reported. The pH of the solution at the column’s exit was initially higher than that at the entrance, and then decreased slowly. This pH increase was attributed to proton transfer from the aqueous solution to the amino and COO− groups of the hydrogel. The effect of operating conditions on the mass transfer zone (MTZ) and the length of the unused bed (HLUB) is reported. At the lower flow rate and lower Cu(II) concentration used, the MTZ was completely developed and the column operated efficiently; by increasing column height, the MTZ has a better opportunity to develop fully. Experimental data were fitted to the fixed-bed Thomas model using a non-linear regression analysis and a good correspondence between experimental and Thomas model curves was observed.


Sign in / Sign up

Export Citation Format

Share Document