Timing growth and development of Campanula by daily light integral and supplemental light level in a cost-efficient light control system

2012 ◽  
Vol 143 ◽  
pp. 189-196 ◽  
Author(s):  
Katrine Heinsvig Kjaer ◽  
Carl-Otto Ottosen ◽  
Bo Nørregaard Jørgensen
HortScience ◽  
2005 ◽  
Vol 40 (1) ◽  
pp. 114-118 ◽  
Author(s):  
Beth A. Fausey ◽  
Royal D. Heins ◽  
Arthur C. Cameron

The growth and development of Achillea ×millefolium L. `Red Velvet', Gaura lindheimeri Engelm. & Gray `Siskiyou Pink' and Lavandula angustifolia Mill. `Hidcote Blue' were evaluated under average daily light integrals (DLIs) of 5 to 20 mol·m-2·d-1. Plants were grown in a 22 ± 2 °C glass greenhouse with a 16-h photoperiod under four light environments: 50% shading of ambient light plus PPF of 100 μmol·m-2·s-1 (L1); ambient light plus PPF of 20 μmol·m-2·s-1 (L2); ambient light plus PPF of 100 μmol·m-2·s-1 (L3); and ambient light plus PPF of 150 μmol·m-2·s-1 (L4). Between 5 to 20 mol·m-2·d-1, DLI did not limit flowering and had little effect on timing in these studies. Hence, the minimum DLI required for flowering of Achillea, Gaura and Lavandula must be <5 mol·m-2·d-1, the lowest light level tested. However, all species exhibited prostrate growth with weakened stems when grown at a DLI of about 10 mol·m-2·d-1. Visual quality and shoot dry mass of Achillea, Gaura and Lavandula linearly increased as DLI increased from 5 to 20 mol·m-2·d-1 and there was no evidence that these responses to light were beginning to decline. While 10 mol·m-2·d-1 has been suggested as an adequate DLI, these results suggest that 15 to 20 mol·m-2·d-1 should be considered a minimum for production of these herbaceous perennials when grown at about 22 °C.


HortScience ◽  
2008 ◽  
Vol 43 (7) ◽  
pp. 2052-2059 ◽  
Author(s):  
Roberto G. Lopez ◽  
Erik S. Runkle

A majority of commercial propagation of herbaceous ornamental cuttings occurs during the winter when the photosynthetic daily light integral (DLI) is relatively low. We quantified how the mean DLI influenced rooting and subsequent growth and development of two popular vegetatively propagated species, New Guinea impatiens (Impatiens hawkeri Bull.) and petunia (Petunia ×hybrida hort. Vilm.-Andr.). Three cultivars of each species were propagated under a mean DLI ranging from 1.2 to 10.7 mol·m−2·d−1. Cuttings were rooted in a controlled greenhouse environment maintained at 24 to 25 °C with overhead mist, a vapor-pressure deficit of 0.3 kPa, and a 12-h photoperiod. Rooting and growth evaluations of cuttings were made after 8 to 16 d. In a separate experiment, rooted cuttings under DLI treatments were then transplanted into 10-cm containers and grown in a common greenhouse at 21 ± 2 °C under a 16-h photoperiod to identify any residual effects on subsequent growth and development. In both species, rooting, biomass accumulation, and quality of cuttings increased and subsequent time to flower generally decreased as mean propagation DLI increased. For example, root number of petunia ‘Tiny Tunia Violet Ice’ after 16 days of propagation increased from 17 to 40 as the propagation DLI increased from 1.2 to 7.5 mol·m−2·d−1. In addition, cutting shoot height decreased from 6.3 to 4.5 cm, and root and shoot dry biomass of cuttings harvested after 16 days of propagation increased by 737% and 106%, respectively. Subsequent time to flower for ‘Tiny Tunia Violet Ice’ from the beginning of propagation decreased from 50 to 29 days as propagation DLI increased from 1.4 to 10.7 mol·m−2·d−1 regardless of the DLI provided after propagation. In New Guinea impatiens ‘Harmony White’, root and shoot dry weight of cuttings increased by 1038% and 82%, respectively, and subsequent time to flower decreased from 85 to 70 days as the propagation DLI increased from 1.2 to 10.7 mol·m−2·d−1. These experiments quantify the role of the photosynthetic DLI during propagation on the rooting and subsequent growth and development of vegetatively propagated herbaceous ornamental cuttings.


HortScience ◽  
2005 ◽  
Vol 40 (5) ◽  
pp. 1336-1339 ◽  
Author(s):  
Lee Ann Pramuk ◽  
Erik S. Runkle

The photosynthetic daily light integral (DLI) dramatically increases during the spring when the majority of bedding plants are commercially produced. However, the effects of DLI on seedling growth and development have not been well characterized for most bedding plant species. Our objectives were to quantify the effects of DLI on growth and development of Celosia, Impatiens, Salvia, Tagetes, and Viola during the seedling stage and determine whether there were any residual effects of DLI on subsequent growth and development after transplant. Seedlings were grown in growth chambers for 18 to 26 days at 21 °C with a DLI ranging from 4.1 to 14.2 mol·m–2·d–1. Average seedling shoot dry weight per internode (a measure of quality) increased linearly 64%, 47%, 64%, and 68% within this DLI range in Celosia, Impatiens, Tagetes, and Viola, respectively. Seedlings were then transplanted to 10-cm containers and grown in a common environment (average daily temperature of 22 °C and DLI of 8.5 mol·m–2·d–1) to determine subsequent effects on plant growth and development. Flowering of Celosia, Impatiens, Salvia, Tagetes, and Viola occurred 10, 12, 11, 4, and 12 days earlier, respectively, when seedlings were previously grown under the highest DLI compared with the lowest. Except for Viola, earlier flowering corresponded with the development of fewer nodes below the first flower. Flower bud number and plant shoot dry weight at first flowering (plant quality parameters) decreased as the seedling DLI increased in all species except for flower number of Tagetes. Therefore, seedlings grown under a greater DLI flowered earlier, but plant quality at first flowering was generally reduced compared with that of seedlings grown under a lower DLI.


2010 ◽  
Vol 20 (5) ◽  
pp. 929-933 ◽  
Author(s):  
Katherine F. Garland ◽  
Stephanie E. Burnett ◽  
Lois B. Stack ◽  
Donglin Zhang

Coleus (Solenostemon scutellarioides) traditionally has been recommended as a shade plant, but many cultivars are also suitable for full sun. In regions of the country where light limits growth and photosynthesis, supplemental lights are used to increase daily light integral (DLI). Understanding the minimum DLI necessary to produce coleus would minimize supplemental lighting use, reducing costs and improving production sustainability. ‘Kong Red’ and ‘Wizard Coral Sunrise’ coleus were grown in a greenhouse under a 12-hour photoperiod and a mean DLI of 2.9, 3.8, 5.8, or 10.0 mol·m−2·d−1 to determine the lowest light level needed to produce high-quality plants. After 8 weeks, both cultivars had a 4.2-fold increase in shoot dry weight as DLI increased from 2.9 to 10.0 mol·m−2·d−1. Plants grown under 10.0 mol·m−2·d−1 were 22% to 25% taller and 18% to 21% wider compared with those grown under 2.9 mol·m−2·d−1. ‘Kong Red’ had 3.6 times as many branches and ‘Wizard Coral Sunrise’ had over twice as many branches when grown under 10.0 mol·m−2·d−1 compared with those grown under the lowest DLI. Leaf counts for both cultivars were 64% greater when grown under the highest DLI compared with those produced under the lowest DLI; leaf area for both cultivars was also positively correlated with DLI. Leaves of both cultivars had significantly more green area (i.e., less variegation) when grown under lower DLIs. Overall, both cultivars exhibited a more dense growth habit and greater degree of variegation when grown under the highest DLI. Therefore, we recommend growing ‘Kong Red’ and ‘Wizard Coral Sunrise’ coleus under a minimum DLI of 10.0 mol·m−2·d−1.


HortScience ◽  
2005 ◽  
Vol 40 (4) ◽  
pp. 1099C-1099
Author(s):  
Lee Ann Pramuk ◽  
Erik S. Runkle

The photosynthetic daily light integral (DLI) dramatically increases during the spring, but effects of DLI on seedling growth and development have not been characterized for many species. We quantified the effects of DLI on growth and development of Celosia, Impatiens, Salvia, Tagetes, and Viola during the seedling stage and determined whether there were any residual effects of DLI on subsequent growth and development after transplant. Seedlings were grown in growth chambers for 18–26 days at 21 °C with a DLI ranging from 4.1–14.2 mol·mol·m-2·d-1. Average seedling shoot dry weight per internode (a measure of quality) increased linearly 64%, 47%, 64%, and 68% within this DLI range in Celosia, Impatiens, Tagetes, and Viola, respectively. Seedlings were then transplanted to 10-cm containers and grown in a common environment (average daily temperature of 22 °C and DLI of 8.5 mol·m-2·d-1) to determine subsequent effects on plant growth and development. Flowering of Celosia, Impatiens, Salvia, Tagetes, and Viola occurred 10, 12, 11, 4, and 12 days earlier, respectively, when seedlings were previously grown under the highest DLI compared with the lowest. Except for Viola, earlier flowering corresponded with the development of fewer nodes below the first flower. Flower bud number and plant shoot dry weight at first flowering decreased as the seedling DLI increased in all species except for flower number of Tagetes. Therefore, seedlings grown under a greater DLI flowered earlier, but plant quality at first flowering was generally reduced compared with that of seedlings grown under a lower DLI.


HortScience ◽  
2014 ◽  
Vol 49 (1) ◽  
pp. 51-54 ◽  
Author(s):  
Joaquin A. Chong ◽  
Uttara C. Samarakoon ◽  
James E. Faust

Poinsettia stock plants consist of a dense canopy of competing shoots, and the growth and development of these individual shoots have not been previously quantified. The effects of air temperature, daily light integral (DLI), and canopy density (CD) were investigated on poinsettia (Euphorbia pulcherrima Willd. ex. Klotsch) ‘Freedom Red’ shoot development in a stock plant canopy. Plants were grown at two constant temperatures (20.3 or 25.7 °C), five CD (43, 86, 129, 172, or 215 shoots/m2), and three DLI treatments (2.6, 4.4, or 7.7 mol·m−2.d−1 for the September planting and 4.0, 6.0, or 10.6 mol·m−2.d−1 for the January planting). Shoot position at the final data collection was used to assign shoots to different levels within the canopy; Level 1 = the four highest shoots, Level 2 = the next four highest shoots, and so forth for Levels 3, 4, and 5. Temperature did not significantly affect leaf unfolding rate (LUR), shoot fresh mass (FM), or shoot caliper, whereas DLI and CD affected shoot growth and development. LUR and FM increased as DLI increased from 2.6 to 10.6 mol·m−2.d−1, whereas LUR and FM decreased on the uppermost shoots in the canopy, e.g., Level 1 shoots, as CD increased from 43 to 129 shoots/m2. Therefore, higher CD required higher DLI to achieve similar LUR and FM. Shoot caliper on Level 1 shoots increased from 6.3 to 7.4 mm as CD decreased from 129 to 43 shoots/m2; and shoot caliper increased from 5.8 to 7.6 mm as DLI increased from 4.0 to 10.6 mol·m−2.d−1. The DLI environment needs to be managed to accommodate greater CD, to sustain growth and development of individual shoots within the canopy of poinsettia stock plants.


HortScience ◽  
2012 ◽  
Vol 47 (7) ◽  
pp. 856-860 ◽  
Author(s):  
Veronica A. Hutchinson ◽  
Christopher J. Currey ◽  
Roberto G. Lopez

Vegetatively propagated bedding plants are produced during the late winter and early spring when outdoor photosynthetic daily light integral (DLI) is low, especially in northern latitudes. Our objective was to quantify how propagation DLI influences subsequent growth and development of annual bedding plants. Cuttings of Angelonia angustifolia Benth. ‘AngelMist White Cloud’, Nemesia fruticans (Thunb.) Benth. ‘Aromatica Royal’, Osteospermum ecklonis (DC.) Norl. ‘Voltage Yellow’, and Verbena ×hybrida Ruiz ‘Aztec Violet’ were harvested and propagated in a glass-glazed greenhouse. After callusing (≈5 mol·m−2·d−1 for 7 days), cuttings of each species were placed under one of three different fixed-woven shadecloths providing ≈38%, 61%, or 86% shade or no shade with 16 h of supplemental light for 14 days. Rooted cuttings were then transplanted into 11-cm containers and grown in a common greenhouse of 21 ± 1 °C and DLI of ≈12 mol·m−2·d−1 to identify any residual effects on subsequent growth and development during the finish stage. As DLI during propagation increased, time to first open flower decreased for Angelonia, Nemesia, Osteospermum, and Verbena. For example, time to flower for Angelonia and Osteospermum was hastened by 23 and 19 days, respectively, as DLI during propagation increased from 1.2 to 12.3 mol·m−2·d−1. Our research can be used to predict growth and flowering under varying propagation DLIs for the cultivars of Angelonia, Nemesia, Osteospermum, and Verbena in the study.


PLoS ONE ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. e0248662
Author(s):  
Kellie J. Walters ◽  
Roberto G. Lopez

In controlled environments, crop models that incorporate environmental factors can be developed to optimize growth and development as well as conduct cost and/or resource use benefit analyses. The overall objective of this study was to model growth and development of dill ‘Bouquet’ (Anethum graveolens), parsley ‘Giant of Italy’ (Petroselinum crispum), and watercress (Nasturtium officinale) in response to photosynthetic daily light integral (DLI) and mean daily temperature (MDT). Plants were grown hydroponically in five greenhouse compartments with MDTs ranging from 9.7 to 27.2 °C under 0%, 30%, or 50% shade cloth to create DLIs ranging from 6.2 to 16.9 mol·m‒2·d‒1. MDT and DLI interacted to influence dill fresh mass and height, and watercress maximum quantum yield of dark adapted leaves (Fv/Fm), height, and branch number while only MDT affected dill leaf number and watercress fresh mass and branch length. Besides dry matter concentration (DMC), parsley was influenced by MDT and not DLI. Increasing MDT from ≈10 to 22.4 °C (parsley) or 27.2 °C (dill and watercress), linearly or near-linearly increased fresh mass. For dill, increasing DLI decreased fresh mass when MDT was low (9.7 to 13.9 °C) and increased fresh mass when MDT was high (18.4 to 27.2 °C). DMC of dill, parsley, and watercress increased as MDT decreased or DLI increased, indicating a higher proportion of plant fresh mass is water at higher MDTs or lower DLIs. With these data we have created growth and development models for culinary herbs to aid in predicting responses to DLI and MDT.


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 508e-508
Author(s):  
Bin Liu ◽  
Royal D. Heins

A concept of ratio of radiant to thermal energy (RRT) has been developed to deal with the interactive effect of light and temperature on plant growth and development. This study further confirms that RRT is a useful parameter for plant growth, development, and quality control. Based on greenhouse experiments conducted with 27 treatment combinations of temperature, light, and plant spacing, a model for poinsettia plant growth and development was constructed using the computer program STELLA II. Results from the model simulation with different levels of daily light integral, temperature, and plant spacing showed that the RRT significantly affects leaf unfolding rate when RRT is lower than 0.025 mol/degree-day per plant. Plant dry weight is highly correlated with RRT; it increases linearly as RRT increases.


Sign in / Sign up

Export Citation Format

Share Document