scholarly journals Minimum Daily Light Integral for Growing High-quality Coleus

2010 ◽  
Vol 20 (5) ◽  
pp. 929-933 ◽  
Author(s):  
Katherine F. Garland ◽  
Stephanie E. Burnett ◽  
Lois B. Stack ◽  
Donglin Zhang

Coleus (Solenostemon scutellarioides) traditionally has been recommended as a shade plant, but many cultivars are also suitable for full sun. In regions of the country where light limits growth and photosynthesis, supplemental lights are used to increase daily light integral (DLI). Understanding the minimum DLI necessary to produce coleus would minimize supplemental lighting use, reducing costs and improving production sustainability. ‘Kong Red’ and ‘Wizard Coral Sunrise’ coleus were grown in a greenhouse under a 12-hour photoperiod and a mean DLI of 2.9, 3.8, 5.8, or 10.0 mol·m−2·d−1 to determine the lowest light level needed to produce high-quality plants. After 8 weeks, both cultivars had a 4.2-fold increase in shoot dry weight as DLI increased from 2.9 to 10.0 mol·m−2·d−1. Plants grown under 10.0 mol·m−2·d−1 were 22% to 25% taller and 18% to 21% wider compared with those grown under 2.9 mol·m−2·d−1. ‘Kong Red’ had 3.6 times as many branches and ‘Wizard Coral Sunrise’ had over twice as many branches when grown under 10.0 mol·m−2·d−1 compared with those grown under the lowest DLI. Leaf counts for both cultivars were 64% greater when grown under the highest DLI compared with those produced under the lowest DLI; leaf area for both cultivars was also positively correlated with DLI. Leaves of both cultivars had significantly more green area (i.e., less variegation) when grown under lower DLIs. Overall, both cultivars exhibited a more dense growth habit and greater degree of variegation when grown under the highest DLI. Therefore, we recommend growing ‘Kong Red’ and ‘Wizard Coral Sunrise’ coleus under a minimum DLI of 10.0 mol·m−2·d−1.

HortScience ◽  
2005 ◽  
Vol 40 (5) ◽  
pp. 1336-1339 ◽  
Author(s):  
Lee Ann Pramuk ◽  
Erik S. Runkle

The photosynthetic daily light integral (DLI) dramatically increases during the spring when the majority of bedding plants are commercially produced. However, the effects of DLI on seedling growth and development have not been well characterized for most bedding plant species. Our objectives were to quantify the effects of DLI on growth and development of Celosia, Impatiens, Salvia, Tagetes, and Viola during the seedling stage and determine whether there were any residual effects of DLI on subsequent growth and development after transplant. Seedlings were grown in growth chambers for 18 to 26 days at 21 °C with a DLI ranging from 4.1 to 14.2 mol·m–2·d–1. Average seedling shoot dry weight per internode (a measure of quality) increased linearly 64%, 47%, 64%, and 68% within this DLI range in Celosia, Impatiens, Tagetes, and Viola, respectively. Seedlings were then transplanted to 10-cm containers and grown in a common environment (average daily temperature of 22 °C and DLI of 8.5 mol·m–2·d–1) to determine subsequent effects on plant growth and development. Flowering of Celosia, Impatiens, Salvia, Tagetes, and Viola occurred 10, 12, 11, 4, and 12 days earlier, respectively, when seedlings were previously grown under the highest DLI compared with the lowest. Except for Viola, earlier flowering corresponded with the development of fewer nodes below the first flower. Flower bud number and plant shoot dry weight at first flowering (plant quality parameters) decreased as the seedling DLI increased in all species except for flower number of Tagetes. Therefore, seedlings grown under a greater DLI flowered earlier, but plant quality at first flowering was generally reduced compared with that of seedlings grown under a lower DLI.


HortScience ◽  
2005 ◽  
Vol 40 (4) ◽  
pp. 1099C-1099
Author(s):  
Lee Ann Pramuk ◽  
Erik S. Runkle

The photosynthetic daily light integral (DLI) dramatically increases during the spring, but effects of DLI on seedling growth and development have not been characterized for many species. We quantified the effects of DLI on growth and development of Celosia, Impatiens, Salvia, Tagetes, and Viola during the seedling stage and determined whether there were any residual effects of DLI on subsequent growth and development after transplant. Seedlings were grown in growth chambers for 18–26 days at 21 °C with a DLI ranging from 4.1–14.2 mol·mol·m-2·d-1. Average seedling shoot dry weight per internode (a measure of quality) increased linearly 64%, 47%, 64%, and 68% within this DLI range in Celosia, Impatiens, Tagetes, and Viola, respectively. Seedlings were then transplanted to 10-cm containers and grown in a common environment (average daily temperature of 22 °C and DLI of 8.5 mol·m-2·d-1) to determine subsequent effects on plant growth and development. Flowering of Celosia, Impatiens, Salvia, Tagetes, and Viola occurred 10, 12, 11, 4, and 12 days earlier, respectively, when seedlings were previously grown under the highest DLI compared with the lowest. Except for Viola, earlier flowering corresponded with the development of fewer nodes below the first flower. Flower bud number and plant shoot dry weight at first flowering decreased as the seedling DLI increased in all species except for flower number of Tagetes. Therefore, seedlings grown under a greater DLI flowered earlier, but plant quality at first flowering was generally reduced compared with that of seedlings grown under a lower DLI.


2017 ◽  
Vol 27 (4) ◽  
pp. 472-481 ◽  
Author(s):  
Nicholas J. Flax ◽  
Christopher J. Currey ◽  
James A. Schrader ◽  
David Grewell ◽  
William R. Graves

Our objectives were to quantify the growth and quality of herbaceous annuals grown in different types of bioplastic-based biocontainers in commercial greenhouses and quantify producer interest in using these types of biocontainers in their production systems. Seedlings of ‘Serena White’ angelonia (Angelonia angustifolia) and ‘Maverick Red’ zonal geranium (Pelargonium ×hortorum) that had been transplanted into nine different (4.5-inch diameter) container types [eight bioplastic-based biocontainers and a petroleum-based plastic (PP) (control)] were grown at six commercial greenhouses in the upper midwestern United States. Plants were grown alongside other bedding annuals in each commercial greenhouse, and producers employed their standard crop culture practices. Data were collected to characterize growth when most plants were flowering. Questionnaires to quantify producer perceptions and interest in using bioplastic-based biocontainers, interest in different container attributes, and satisfaction were administered at select times during the experiment. Container type interacted with greenhouse to affect angelonia growth index (GI) and shoot dry weight (SDW), as well as shoot, root, and container ratings. Container type or greenhouse affected geranium GI and shoot rating, and their interaction affected SDW, and root and container ratings. These results indicate that commercial producers can grow herbaceous annuals in a range of bioplastic-based biocontainers with few or no changes to their crop culture practices.


Agronomy ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 870 ◽  
Author(s):  
Filippos Bantis ◽  
Athanasios Koukounaras ◽  
Anastasios S. Siomos ◽  
Kalliopi Radoglou ◽  
Christodoulos Dangitsis

Watermelon is cultivated worldwide and is mainly grafted onto interspecific squash rootstocks. Light-emitting diodes (LEDs) can be implemented as light sources during indoor production of both species and their spectral quality is of great importance. The objective of the present study was to determine the optimal emission of LEDs with wide wavelength for the production of watermelon and interspecific squash seedlings in a growth chamber. Conditions were set at 22/20 °C temperature (day/night), 16 h photoperiod, and 85 ± 5 μmol m−2 s−1 photosynthetic photon flux density. Illumination was provided by fluorescent (FL, T0) lamps or four LEDs (T1, T2, T3, and T4) emitting varying wide spectra. Watermelon seedlings had greater shoot length, stem diameter, cotyledon area, shoot dry weight-to-length (DW/L) ratio, and Dickson’s quality index (DQI) under T1 and T3, while leaf area and shoot dry weight (DW) had higher values under T1. Interspecific squash seedlings had greater stem diameter, and shoot and root DW under T1 and T3, while leaf and cotyledon areas were favored under T1. In both species, T0 showed inferior development. It could be concluded that a light source with high red emission, relatively low blue emission, and a red:far-red ratio of about 3 units seems ideal for the production of high-quality watermelon (scion) and interspecific squash (rootstock) seedlings.


HortScience ◽  
1995 ◽  
Vol 30 (3) ◽  
pp. 432e-432
Author(s):  
Garry V. McDonald ◽  
H. Brent Pemberton ◽  
Marvin L. Baker ◽  
Jo Mondier

Liners of Rosa `MEIrutral' (=Red Sunblaze) were potted in 11.5-cm pots using Fison's Sunshine Mix no. 2 amended with 0%, 10%, 20%, or 30% composted poultry litter (PL) by volume. Plants were grown for 3 weeks before cutting back to 5 cm for final forcing (short-cycle) and were fertilized with 200 mg N/liter from 20N–8.9P–16.6K on a three feed and one leach schedule for the duration of the experiment. By flowering, plants growing in the 30% PL media were dead or stunted. However, there was little difference in total number of flowers, days to flower, and root and shoot dry weight between the other treatments. Media pH rose from 6.6 to 7.4 and EC rose from 0.7 to 6 millimhos with increasing PL content. This result alone could explain the poor growth in the highest PL rate treatment. However, tissue N levels were supraoptimal for the 20% and 30% PL rates, and tissue P levels were excessive for all PL rates. If a high-quality source of composted PL is available, it could be used as a media component for potted rose production at rates <20%, but monitoring of pH and EC and modifying fertilization techniques may be necessary to ensure success.


HortScience ◽  
2004 ◽  
Vol 39 (4) ◽  
pp. 776D-776
Author(s):  
Fredy R. Romero* ◽  
Richard J. Gladon ◽  
Henry G. Taber

Impatiens (Impatiens wallerana Hook. f.) is the most important annual bedding plant in the US, based on wholesale dollar volume. Production of high-quality plants requires optimization of the nutrition regimen during growth, especially the total nitrogen (N) concentration and the ratio of N sources. Our objective was to determine the N concentration and ratio of N sources that optimize bedding-plant impatiens growth and development. We used four N concentrations (3.5, 7, 10.5, and 14 mmol·L-1 of N) in factorial combination with four ratios of nitrate-N (NO3--N) to ammonium-N (NH4+-N) (4:0, 3:1, 1:1, and 1:3). Application of treatments began at day 30, and every-other-day applications were conducted until day 60. From day 60 to day 70 only deionized water was applied. N concentration and source displayed interation for most growth parameters. When N was supplied at a concentration ≤7 mmol·L-1, the NO3--N to NH4+-N ratio did not affect growth. When N was supplied at a concentration ≥10.5 mmol·L-1, a 1:3 NO3--N to NH4+-N ratio yielded the greatest shoot dry weight, shoot fresh weight, plant diameter, and number of flower buds per plant. With a NO3--N to NH4+-N ratio of 4:0, these growth parameters decreased. To produce high-quality, bedding-plant impatiens, N should be applied at NO3--N to NH4+-N ratios between 1:1 and 1:3 in combination with an N concentration of 10.5 mmol·L<-1 at each fertigation from day 30 to day 60 of the production cycle.


2007 ◽  
Vol 132 (3) ◽  
pp. 283-288 ◽  
Author(s):  
Lee Ann Moccaldi ◽  
Erik S. Runkle

Photosynthetic daily light integral (DLI) and temperature are two environmental factors that profoundly influence plant growth and development. Two common ornamental annual crops, salvia (Salvia splendens F. Sello ex Roem & Schult.) and marigold (Tagetes patula L.), were grown in glass greenhouses under a mean DLI of 5 to 25 mol·m−2·d−1 at temperatures from 14 to 27 °C. Growth (e.g., plant dry weight at flowering) and flowering characteristics (e.g., time to flowering and flower number) were modeled in response to the mean daily temperature and DLI by using multiple regression analysis. The rate of progress to flowering of salvia and marigold was primarily influenced by the mean air temperature. For example, time from seedling transplant to flowering of salvia decreased from 42 days to 24 days as temperature increased from 15 to 25 °C, with a mean DLI of 10 mol·m−2·d−1. Flower number and plant dry weight on the date of first flowering generally decreased with increasing temperature and decreasing DLI in both species. For example, marigold plants grown at 15 °C and a mean DLI of 25 mol·m−2·d−1 were 2.45 times greater in dry weight, had 2.12 more flowers, and had 49% larger flowers at flowering compared with plants grown at 25 °C and a mean DLI of 5 mol·m−2·d−1. The models can be used to predict the impact of changing light and temperature conditions on plant quality and flowering of these two crops.


1995 ◽  
Vol 5 (3) ◽  
pp. 237-239 ◽  
Author(s):  
Alan W. Meerow

Growth of Ravenea rivularis Jumelle and Perrier (majesty palm) and `Lady Jane' Anthurium Schott was compared in container media, using as a primary organic component sphagnum peat, sedge peat, or coir dust. Growth index and shoot and root dry weights of majesty palm were significantly higher in the coir than the sedge peat medium. Growth index and shoot dry weight were only marginally higher for the anthurium in the coir vs. sedge peat medium, and root dry weights were comparable. Both crops grew equally well in the coir and the sphagnum peat medium. The sedge peat medium had the most air porosity and the least water-holding capacity of the three media at the initiation of the trials, but at termination showed a reversal of these parameters. The coir medium showed the least change in these parameters over 8 months. High-quality coir dust appears to be an acceptable substitute for sphagnum or sedge peat in soilless container media.


HortScience ◽  
2010 ◽  
Vol 45 (2) ◽  
pp. 277-282 ◽  
Author(s):  
Marc W. Van Iersel ◽  
Sue Dove ◽  
Jong-Goo Kang ◽  
Stephanie E. Burnett

More efficient irrigation practices are needed in ornamental plant production to reduce the amount of water used for production as well as runoff of fertilizers and pesticides. The objective of this study was to determine how different substrate volumetric water contents (θ) affected petunia (Petunia ×hybrida) growth and to quantify the daily water use of the plants. A soil moisture sensor-controlled irrigation system was used to maintain θ within ≈0.02 m3·m−3 of the θ threshold values for irrigation, which ranged from 0.05 to 0.40 m3·m−3. Shoot dry weight increased as the θ threshold increased from 0.05 to 0.25 m3·m−3 and was correlated with the total amount of irrigation water applied over the 3-week course of the experiment. The daily water use of the petunias grown with a θ threshold of 0.40 m3·m−3 was 12 to 44 mL/plant and was positively correlated with both plant age and daily light integral. Lower θ thresholds resulted in a decrease in both leaf water (ψ) and osmotic potential (ψS). A decrease in turgor pressure (P) at lower θ was seen at 11, but not 20 days after the start of the treatments. There were no significant effects of θ on ψ, ψS, or P on fully rehydrated plants at the end of the study. Plants were able to survive and grow at all θs, although water at a θ less than 0.20 m3·m−3 is generally considered to be unavailable to the plants. Results show that it is possible to automatically irrigate plants with the use of soil moisture sensors, and this approach to irrigation may have applications in controlling the growth of ornamental plants.


Sign in / Sign up

Export Citation Format

Share Document