Changes in cold hardiness and carbohydrate content in peach ( Prunus persica ) trunk bark and wood tissues during cold acclimation and deacclimation

2017 ◽  
Vol 219 ◽  
pp. 45-52 ◽  
Author(s):  
Duk Jun Yu ◽  
Ju Young Hwang ◽  
Sun Woo Chung ◽  
Hee Duk Oh ◽  
Seok Kyu Yun ◽  
...  
Genes ◽  
2020 ◽  
Vol 11 (6) ◽  
pp. 611
Author(s):  
Duk Jun Yu ◽  
Sung Hoon Jun ◽  
Junhyung Park ◽  
Jung Hyun Kwon ◽  
Hee Jae Lee

We analyzed the transcriptomes in the shoots of five-year-old ‘Soomee’ peach trees (Prunus persica) during cold acclimation (CA), from early CA (end of October) to late CA (middle of January), and deacclimation (DA), from late CA to late DA (middle of March), to identify the genes involved in cold hardiness. Cold hardiness of the shoots increased from early to late CA, but decreased from late CA to late DA, as indicated by decreased and increased the median lethal temperature (LT50), respectively. Transcriptome analysis identified 17,208 assembled transcripts during all three stages. In total, 1891 and 3008 transcripts were differentially expressed with a |fold change| > 2 (p < 0.05) between early and late CA, and between late CA and late DA, respectively. Among them, 1522 and 2830, respectively, were functionally annotated with gene ontology (GO) terms having a greater proportion of differentially expressed genes (DEGs) associated with molecular function than biological process or cellular component categories. The biochemical pathways best represented both periods from early to late CA and from late CA to late DA were ‘metabolic pathway’ and ‘biosynthesis of secondary metabolites’. We validated these transcriptomic results by performing reverse transcription quantitative polymerase chain reaction on the selected DEGs showing significant fold changes. The relative expressions of the selected DEGs were closely related to the LT50 values of the peach tree shoots: ‘Soomee’ shoots exhibited higher relative expressions of the selected DEGs than shoots of the less cold-hardy ‘Odoroki’ peach trees. Irrespective of the cultivar, the relative expressions of the DEGs that were up- and then down-regulated during CA, from early to late CA, and DA, from late CA to late DA, were more closely correlated with cold hardiness than those of the DEGs that were down- and then up-regulated. Therefore, our results suggest that the significantly up- and then down-regulated DEGs are associated with cold hardiness in peach tree shoots. These DEGs, including early light-induced protein 1, chloroplastic, 14-kDa proline-rich protein DC2.15, glutamate dehydrogenase 2, and triacylglycerol lipase 2, could be candidate genes to determine cold hardiness.


HortScience ◽  
1994 ◽  
Vol 29 (5) ◽  
pp. 457a-457
Author(s):  
C. L. Haynes ◽  
O. M. Lindstrom ◽  
M. A. Dirr ◽  
R. Severson

Cold hardiness and carbohydrate content of 4 cultivars of field-grown southern magnolia (Magnolia grandiflora L.) were determined monthly during the 1992-1993 winter. Initially, `Claudia Wannamaker', `Little Gem', `Timeless Beauty', and `Victoria' had similar stem and leaf cold hardiness estimates of -6C in October. However, by February `Claudia Wannamaker' and `Victoria' stems were 6 and 3C more cold hardy than `Little Gem' and `Timeless Beauty' stems. `Claudia Wannamaker' leaves were also 6C more cold hardy than `Little Gem' and `Timeless Beauty' leaves in February. Carbohydrate analysis indicates increases in oligosaccharides during cold acclimation in fall.


HortScience ◽  
1996 ◽  
Vol 31 (6) ◽  
pp. 923-925 ◽  
Author(s):  
Rajeev Arora ◽  
Michael Wisniewski

The seasonal pattern of dehydrin accumulation was characterized during cold acclimation and deacclimation in the xylem tissues of genetically related (sibling) deciduous and evergreen peach (Prunus persica L.). Immunological studies indicate that a 60-kD polypeptide in peach xylem tissues is a dehydrin protein. Comparison of its accumulation pattern with seasonal fluctuations in cold hardiness indicate that dehydrin accumulated to high levels during the peak of cold acclimation. However, its accumulation was only weakly associated with cold hardiness during early stages of cold acclimation and during deacclimation. Our results indicate that factors related to supercooling rather than dehydrin accumulation may be primarily responsible for determining levels of cold hardiness during transition periods.


2010 ◽  
Vol 28 (4) ◽  
pp. 235-239
Author(s):  
Frank P. Henning ◽  
Timothy J. Smalley ◽  
Orville M. Lindstrom ◽  
John M. Ruter

Abstract Plants that maintain their leaves throughout winter may respond differently to fall fertilization than deciduous plants. The effects of fall fertilization on cold hardiness, nutrient uptake, growth and flower production of evergreen versus deciduous azaleas were studied. Rhododendron canescens (Michx.) Sweet and R. × satsuki ‘Wakaebisu’ were grown in containers, outdoors in Athens, GA, under three fall fertigation regimes applied daily as 0.5 liter (0.13 gal) solutions containing: 1) 75 mg·liter−1 N from August 1 through September 29, 2) 75 mg·liter−1 N from August 1 through November 28, and 3) 125 mg·liter−1 N from August 1 through November 28. Stem freeze resistance was analyzed monthly November through March. Growth of azaleas that received 120 days of extended fertigation (August 1 through November 28) was not increased compared to azaleas that received 60 days of extended fertigation (August 1 through September 29). Growth of the two taxa did not differ in their response to fertilization treatments. The high rate of extended fertilization 125 mg·liter−1 N (from August 1 through November 28) reduced stem freeze resistance November through February, while the moderate rate of extended fertilization (75 mg·liter−1 N from August 1 through November 28) reduced azalea freeze resistance in December. Fall fertilization regimes did not produce differences in the timing of cold acclimation, or deacclimation of R. canescens and R. × satsuki. The high rate of extended fertilization promoted early budbreak of R. × satsuki and postponed flower budbreak of R. canescens. Flower production of R. canescens was not affected by fall fertilization, but the high rate of extended fertilization increased flower production of R. × satsuki compared to plants that received the moderate rate of fertilization 75 mg·liter−1 N from August 1 through September 29.


2020 ◽  
Author(s):  
Kensuke Kimura ◽  
Daisuke Yasutake ◽  
Takahiro Oki ◽  
Koichiro Yoshida ◽  
Masaharu Kitano

Abstract Background and Aims Most perennial plants memorize cold stress for a certain period and retrieve the memories for cold acclimation and deacclimation, which leads to seasonal changes in cold-hardiness. Therefore, a model for evaluating cold stress memories is required for predicting cold-hardiness and for future frost risk assessments under warming climates. In this study we develop a new dynamic model of cold-hardiness by introducing a function imitating past temperature memory in the processes of cold acclimation and deacclimation. Methods We formulated the past temperature memory for plants using thermal time weighted by a forgetting function, and thereby proposed a dynamic model of cold-hardiness. We used the buds of tea plants (Camellia sinensis) from two cultivars, ‘Yabukita’ and ‘Yutakamidori’, to calibrate and validate this model based on 10 years of observed cold-hardiness data. Key Results The model captured more than 90 % of the observed variation in cold-hardiness and predicted accurate values for both cultivars, with root mean square errors of ~1.0 °C. The optimized forgetting function indicated that the tea buds memorized both short-term (recent days) and long-term (previous months) temperatures. The memories can drive short-term processes such as increasing/decreasing the content of carbohydrates, proteins and antioxidants in the buds, as well as long-term processes such as determining the bud phenological stage, both of which vary with cold-hardiness. Conclusions The use of a forgetting function is an effective means of understanding temperature memories in plants and will aid in developing reliable predictions of cold-hardiness for various plant species under global climate warming.


2008 ◽  
Vol 134 (3) ◽  
pp. 473-485 ◽  
Author(s):  
Majken Pagter ◽  
Christian R. Jensen ◽  
Karen K. Petersen ◽  
Fulai Liu ◽  
Rajeev Arora

BMC Biology ◽  
2020 ◽  
Vol 18 (1) ◽  
Author(s):  
Bin Zhang ◽  
Lilin Zhao ◽  
Jing Ning ◽  
Jacob D. Wickham ◽  
Haokai Tian ◽  
...  

Abstract Background Survival to cold stress in insects living in temperate environments requires the deployment of strategies that lead to physiological changes involved in freeze tolerance or freeze avoidance. These strategies may consist of, for instance, the induction of metabolic depression, accumulation of cryoprotectants, or the production of antifreeze proteins, however, little is known about the way such mechanisms are regulated and the signals involved in their activation. Ascarosides are signaling molecules usually known to regulate nematode behavior and development, whose expression was recently found to relate to thermal plasticity in the Japanese pine sawyer beetle Monochamus alternatus. Accumulating evidence also points to miRNAs as another class of regulators differentially expressed in response to cold stress, which are predicted to target genes involved in cold adaptation of insects. Here, we demonstrate a novel pathway involved in insect cold acclimation, through miRNA-mediated regulation of ascaroside function. Results We initially discovered that experimental cold acclimation can enhance the beetle’s cold hardiness. Through screening and functional verification, we found miR-31-5p, upregulated under cold stress, significantly contributes to this enhancement. Mechanistically, miR-31-5p promotes production of an ascaroside (asc-C9) in the beetle by negatively targeting the rate-limiting enzyme, acyl-CoA oxidase in peroxisomal β-oxidation cycles. Feeding experiments with synthetic asc-C9 suggests it may serve as a signal to promote cold acclimation through metabolic depression and accumulation of cryoprotectants with specific gene expression patterns. Conclusions Our results point to important roles of miRNA-mediated regulation of ascaroside function in insect cold adaptation. This enhanced cold tolerance may allow higher survival of M. alternatus in winter and be pivotal in shaping its wide distribution range, greatly expanding the threat of pine wilt disease, and thus can also inspire the development of ascaroside-based pest management strategies.


Sign in / Sign up

Export Citation Format

Share Document