Abscisic acid applied to sweet cherry at fruit set increases amounts of cell wall and cuticular wax components at the ripe stage

2021 ◽  
Vol 283 ◽  
pp. 110097
Author(s):  
Camilo Gutiérrez ◽  
Carlos R. Figueroa ◽  
Aileen Turner ◽  
Sergi Munné-Bosch ◽  
Paula Muñoz ◽  
...  
Cellulose ◽  
2021 ◽  
Author(s):  
Ricardo I. Castro ◽  
Ana Gonzalez-Feliu ◽  
Felipe Valenzuela-Riffo ◽  
Carolina Parra-Palma ◽  
Luis Morales-Quintana

1969 ◽  
Vol 89 (3-4) ◽  
pp. 159-168
Author(s):  
Carlos A. Flores ◽  
Winston De la Torre ◽  
Miguel Monroig ◽  
Wigmar González

Applications of gibberellic acid (GA), paclobutrazol and gibberellic acid (Paclo/GA), fluoridone and gibberellic acid (FL/GA), and abscisic acid (ABA) were made to synchronize flowering in coffee trees (Coffea arabica L.). Overall growth of trees and branches was not affected by the treatments. Production of new leaves was not affected by the treatments. However, the Paclo/GA treatment tended to increase the production of secondary branches. Flower bud production was affected by the ABA treatment during the first three weeks, showing an initial reduction in number and a late development of buds. Plants receiving the GA treatment produced more flowers during the first week of evaluation as well as a higher number and greater weight of mature fruits during the first week of harvesting. 


Agronomy ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1947
Author(s):  
Alson Time ◽  
Claudio Ponce ◽  
Nathalie Kuhn ◽  
Macarena Arellano ◽  
Boris Sagredo ◽  
...  

Abscisic acid (ABA) plays a major role in promoting ripening in sweet cherry, a non-climacteric fruit. Exogenous application of ABA has been performed to study fruit ripening and cracking, but this growth regulator is not used for commercial production. To determine the potential of this growth regulator to improve sweet cherry fruit quality, ABA canopy spraying was assayed in four cultivars. Canopy spraying of S-ABA significantly: (1) enhanced sweet cherry fruit color in ‘Glenred’, ‘Lapins’ and ‘Bing’ cultivars, but not in ‘Royal Rainier’ (a bi-colored cultivar), and (2) decreased fruit size and firmness in ‘Lapins’, ‘Bing’ and ‘Royal Rainier’. Seasonally reproducible effects were seen in ‘Lapins’ (mid/late-maturing) but not in ‘Glenred’ (early-maturing). Canopy spraying of nordihydroguaiaretic acid (NDGA) decreased color and increased fruit size in ‘Lapins’, but not in ‘Glenred’. Direct application of ABA on fruits attached to the tree, without application to the foliage, increased ‘Lapins’ fruit color without reducing size. These results suggest a localized fruit response to exogenous ABA application on fruit color development, but that a decrease in fruit size may be due to the effects of exogenous ABA on the tree canopy foliage.


2020 ◽  
pp. 507-516
Author(s):  
J. Stanley ◽  
C. Scofield ◽  
M. Schurmann ◽  
R. Marshall ◽  
M. Wohlers ◽  
...  
Keyword(s):  

2020 ◽  
Vol 100 (2) ◽  
pp. 185-201 ◽  
Author(s):  
Michelle H. Cortens ◽  
John A. Cline

Gala apple (Malus domestica Borkh.) trees are prone to heavy cropping but respond to chemical fruitlet thinners to reduce crop load and improve fruit quality. Environmental concerns over the fate of the chemical fruitlet thinner carbaryl is widely acknowledged, but crop load management options are limited. In southern Ontario, Gala trees were treated with new thinning compounds or combinations to determine post-bloom thinning efficacy and resulting fruit quality. Treatments included 6-benzyladenine (6-BA) combined with naphthaleneacetic acid (NAA) or abscisic acid (ABA), and 1-aminocyclopropane-1-carboxylic acid (ACC) alone applied at 9 mm in 2014 and 17 mm in 2015. The treatment NAA + 6-BA produced unacceptably small “pygmy” fruit when applied at 17 mm fruitlet diameter. ABA at 150 and 300 mg L−1 and ACC at 150 mg L−1, when applied at 17 mm fruitlet diameter, resulted in acceptable fruit set, crop load, and quality results in comparison with the carbaryl thinner in 1 yr. The bioregulators ACC and ABA combined with 6-BA showed commercial potential for thinning Gala fruit but require further evaluation.


2017 ◽  
Vol 219 ◽  
pp. 182-190 ◽  
Author(s):  
Burcu Belge ◽  
Luis F. Goulao ◽  
Eva Comabella ◽  
Jordi Graell ◽  
Isabel Lara

2020 ◽  
Vol 21 (24) ◽  
pp. 9491
Author(s):  
Kang-Ming Jin ◽  
Ren-Ying Zhuo ◽  
Dong Xu ◽  
Yu-Jun Wang ◽  
Hui-Jin Fan ◽  
...  

Expansins, a group of cell wall-loosening proteins, are involved in cell-wall loosening and cell enlargement in a pH-dependent manner. According to previous study, they were involved in plant growth and abiotic stress responses. However, information on the biological function of the expansin gene in moso bamboo is still limited. In this study, we identified a total of 82 expansin genes in moso bamboo, clustered into four subfamilies (α-expansin (EXPA), β-expansin (EXPB), expansin-like A (EXLA) and expansin-like B (EXPB)). Subsequently, the molecular structure, chromosomal location and phylogenetic relationship of the expansin genes of Phyllostachys edulis (PeEXs) were further characterized. A total of 14 pairs of tandem duplication genes and 31 pairs of segmented duplication genes were also identified, which may promote the expansion of the expansin gene family. Promoter analysis found many cis-acting elements related to growth and development and stress response, especially abscisic acid response element (ABRE). Expression pattern revealed that most PeEXs have tissue expression specificity. Meanwhile, the expression of some selected PeEXs was significantly upregulated mostly under abscisic acid (ABA) and polyethylene glycol (PEG) treatment, which implied that these genes actively respond to expression under abiotic stress. This study provided new insights into the structure, evolution and function prediction of the expansin gene family in moso bamboo.


2014 ◽  
pp. 65-69
Author(s):  
M. Radunić ◽  
S. Goreta Ban ◽  
G. Vuletin Selak ◽  
A. Jazbec ◽  
Z. Čmelik

Sign in / Sign up

Export Citation Format

Share Document