Transcriptomic analysis reveals a role of phenylpropanoid pathway in the enhancement of chilling tolerance by pre-storage cold acclimation in cucumber fruit

2021 ◽  
Vol 288 ◽  
pp. 110282
Author(s):  
Bin Wang ◽  
Chunshuang Wu ◽  
Guang Wang ◽  
Jinming He ◽  
Shijiang Zhu
2021 ◽  
Vol 22 (4) ◽  
pp. 1554
Author(s):  
Tawhidur Rahman ◽  
Mingxuan Shao ◽  
Shankar Pahari ◽  
Prakash Venglat ◽  
Raju Soolanayakanahally ◽  
...  

Cuticular waxes are a mixture of hydrophobic very-long-chain fatty acids and their derivatives accumulated in the plant cuticle. Most studies define the role of cuticular wax largely based on reducing nonstomatal water loss. The present study investigated the role of cuticular wax in reducing both low-temperature and dehydration stress in plants using Arabidopsis thaliana mutants and transgenic genotypes altered in the formation of cuticular wax. cer3-6, a known Arabidopsis wax-deficient mutant (with distinct reduction in aldehydes, n-alkanes, secondary n-alcohols, and ketones compared to wild type (WT)), was most sensitive to water loss, while dewax, a known wax overproducer (greater alkanes and ketones compared to WT), was more resistant to dehydration compared to WT. Furthermore, cold-acclimated cer3-6 froze at warmer temperatures, while cold-acclimated dewax displayed freezing exotherms at colder temperatures compared to WT. Gas Chromatography-Mass Spectroscopy (GC-MS) analysis identified a characteristic decrease in the accumulation of certain waxes (e.g., alkanes, alcohols) in Arabidopsis cuticles under cold acclimation, which was additionally reduced in cer3-6. Conversely, the dewax mutant showed a greater ability to accumulate waxes under cold acclimation. Fourier Transform Infrared Spectroscopy (FTIR) also supported observations in cuticular wax deposition under cold acclimation. Our data indicate cuticular alkane waxes along with alcohols and fatty acids can facilitate avoidance of both ice formation and leaf water loss under dehydration stress and are promising genetic targets of interest.


2021 ◽  
Vol 288 ◽  
pp. 110365
Author(s):  
He Zhang ◽  
Shuqian Zhou ◽  
Penta Pristijono ◽  
John B. Golding ◽  
Huqing Yang ◽  
...  

2021 ◽  
Vol 180 ◽  
pp. 111622
Author(s):  
Yating Zhang ◽  
Nikolaos Ntagkas ◽  
Dimitrios Fanourakis ◽  
Georgios Tsaniklidis ◽  
Jiantao Zhao ◽  
...  

2021 ◽  
Author(s):  
Shuai Zhang ◽  
Dongyao Li ◽  
Xin Zhang ◽  
Yongsheng Sun ◽  
Sha Xu ◽  
...  

During the storage of yogurt, acid-resistant bacteria continue to produce lactic acid (i.e., post-acidification process), leading to undesirable taste and flavor. Many methods have been proposed to inhibit post-acidification. However,...


2020 ◽  
Vol 21 (16) ◽  
pp. 5926
Author(s):  
Wei Dong ◽  
Yuguang Song

Nitrogen is essential for the growth of plants. The ability of some plant species to obtain all or part of their requirement for nitrogen by interacting with microbial symbionts has conferred a major competitive advantage over those plants unable to do so. The function of certain flavonoids (a group of secondary metabolites produced by the plant phenylpropanoid pathway) within the process of biological nitrogen fixation carried out by Rhizobium spp. has been thoroughly researched. However, their significance to biological nitrogen fixation carried out during the actinorhizal and arbuscular mycorrhiza–Rhizobium–legume interaction remains unclear. This review catalogs and contextualizes the role of flavonoids in the three major types of root endosymbiosis responsible for biological nitrogen fixation. The importance of gaining an understanding of the molecular basis of endosymbiosis signaling, as well as the potential of and challenges facing modifying flavonoids either quantitatively and/or qualitatively are discussed, along with proposed strategies for both optimizing the process of nodulation and widening the plant species base, which can support nodulation.


2017 ◽  
Vol 58 (11) ◽  
pp. 1963-1975 ◽  
Author(s):  
Xiangzhang Lv ◽  
Shibei Ge ◽  
Golam Jalal Ahammed ◽  
Xun Xiang ◽  
Zhixin Guo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document