Biostimulants alleviate temperature stress in tomato seedlings

2022 ◽  
Vol 293 ◽  
pp. 110712
Author(s):  
Chenxu Niu ◽  
Ge Wang ◽  
Jing Sui ◽  
Genzhong Liu ◽  
Fangfang Ma ◽  
...  
2012 ◽  
Vol 22 (1) ◽  
pp. 137-144 ◽  
Author(s):  
Weijie Jiang ◽  
Jie Bai ◽  
Xueyong Yang ◽  
Hongjun Yu ◽  
Yanpeng Liu

The application of plant growth regulators (PGRs), such as abscisic acid (ABA), putrescine (Put), and 2,4-epibrassinolide (EBR), has been shown to enhance a plant's resistance to various abiotic stresses. However, the protective effects of these PGRs on tomato (Solanum lycopersicum) seedlings under suboptimal temperature stress have not yet been evaluated. We also do not know the most effective method of application of PGRs for various tomato cultivars. We studied the effects of three rates of exogenous ABA, Put, or EBR in limiting damage from suboptimal temperature stress on two tomato cultivars, Zhongshu6 (considered sensitive to suboptimal temperatures) and SANTIAM (considered tolerant to suboptimal temperatures). Results showed that application of these PGRs at appropriate concentrations could effectively reduce the decline in the net photosynthetic rate (Pn) and the chlorophyll (Chl) content in leaves caused by suboptimal temperature stress in both ‘Zhongshu6’ and ‘SANTIAM’ and could promote an increase in organic osmolyte (proline and soluble sugar) contents and root 2,3,5-triphenyltetrazolium chloride (TTC)-reducing activity for ‘Zhongshu6’. However, these effects were inferior on ‘SANTIAM’. For both cultivars, the best treatment concentrations are 1 mm ABA, 0.1 mm Put, or 0.02 μM EBR. Results indicate that in tomato production, exogenous application of ABA, Put, or EBR at appropriate concentrations can effectively limit damage from suboptimal temperature stress.


2016 ◽  
Vol 141 (4) ◽  
pp. 381-388 ◽  
Author(s):  
Xi Shan ◽  
Heng Zhou ◽  
Ting Sang ◽  
Sheng Shu ◽  
Jin Sun ◽  
...  

We investigated the effects of exogenous spermidine (Spd) on the carbohydrate, nitrogen (N), and endogenous polyamine status of tomato (Solanum lycopersicum) seedlings exposed to high-temperature stress [38/28 °C (day/night)]. High-temperature stress reduced the contents of pyruvate and succinate and inhibited plant growth. The application of exogenous Spd alleviated the inhibition of plant growth induced by high temperature, and also led to an increase in pyruvate, citrate, and succinate levels. High temperature markedly increased the NH4+-N content and reduced the activities of nitrate reductase (NR), glutamine synthetase (GS), and glutamate dehydrogenase (GDH). Spd significantly alleviated the negative effects on NH4+-N assimilation induced by high-temperature stress. Moreover, Spd significantly increased the activities of NR and GDH in the high-temperature-stressed tomato leaves. In contrast, Spd application to high-temperature-stressed plant leaves counteracted high-temperature-induced mRNA expression changes in N metabolism. Spd significantly upregulated the transcriptional levels of NR, nitrite reductase, GS, GDH, and glutamate synthase (GOGAT). In addition, exogenous Spd significantly increased endogenous polyamines. These results suggest that Spd could improve carbohydrate and N status through regulating the gene expression and activity of key enzymes for N metabolism, thus confers the tolerance to high temperature on tomato seedlings.


2020 ◽  
Vol 53 (2) ◽  
Author(s):  
Khalil Ahmed Laghari ◽  
Abdul Jabbar Pirzada ◽  
Mahboob Ali Sial ◽  
Muhammad Athar Khan ◽  
Jamal Uddin Mangi

Sign in / Sign up

Export Citation Format

Share Document