Modeling multi-scale aerosol dynamics and micro-environmental air quality near a large highway intersection using the CTAG model

2013 ◽  
Vol 443 ◽  
pp. 375-386 ◽  
Author(s):  
Yan Jason Wang ◽  
Monica T. Nguyen ◽  
Jonathan T. Steffens ◽  
Zheming Tong ◽  
Yungang Wang ◽  
...  
Author(s):  
Zhiyuan Wang ◽  
Xiaoyi Shi ◽  
Chunhua Pan ◽  
Sisi Wang

Exploring the relationship between environmental air quality (EAQ) and climatic conditions on a large scale can help better understand the main distribution characteristics and the mechanisms of EAQ in China, which is significant for the implementation of policies of joint prevention and control of regional air pollution. In this study, we used the concentrations of six conventional air pollutants, i.e., carbon monoxide (CO), sulfur dioxide (SO2), nitrogen dioxide (NO2), fine particulate matter (PM2.5), coarse particulate matter (PM10), and ozone (O3), derived from about 1300 monitoring sites in eastern China (EC) from January 2015 to December 2018. Exploiting the grading concentration limit (GB3095-2012) of various pollutants in China, we also calculated the monthly average air quality index (AQI) in EC. The results show that, generally, the EAQ has improved in all seasons in EC from 2015 to 2018. In particular, the concentrations of conventional air pollutants, such as CO, SO2, and NO2, have been decreasing year by year. However, the concentrations of particulate matter, such as PM2.5 and PM10, have changed little, and the O3 concentration increased from 2015 to 2018. Empirical mode decomposition (EOF) was used to analyze the major patterns of AQI in EC. The first mode (EOF1) was characterized by a uniform structure in AQI over EC. These phenomena are due to the precipitation variability associated with the East Asian summer monsoon (EASM), referred to as the “summer–winter” pattern. The second EOF mode (EOF2) showed that the AQI over EC is a north–south dipole pattern, which is bound by the Qinling Mountains and Huaihe River (about 35° N). The EOF2 is mainly caused by seasonal variations of the mixed concentration of PM2.5 and O3. Associated with EOF2, the Mongolia–Siberian High influences the AQI variation over northern EC by dominating the low-level winds (10 m and 850 hPa) in autumn and winter, and precipitation affects the AQI variation over southern EC in spring and summer.


2015 ◽  
Vol 8 (12) ◽  
pp. 5189-5211 ◽  
Author(s):  
M. W. Shephard ◽  
C. A. McLinden ◽  
K. E. Cady-Pereira ◽  
M. Luo ◽  
S. G. Moussa ◽  
...  

Abstract. The wealth of air quality information provided by satellite infrared observations of ammonia (NH3), carbon monoxide (CO), formic acid (HCOOH), and methanol (CH3OH) is currently being explored and used for a number of applications, especially at regional or global scales. These applications include air quality monitoring, trend analysis, emissions, and model evaluation. This study provides one of the first direct validations of Tropospheric Emission Spectrometer (TES) satellite-retrieved profiles of NH3, CH3OH, and HCOOH through comparisons with coincident aircraft profiles. The comparisons are performed over the Canadian oil sands region during the intensive field campaign (August–September, 2013) in support of the Joint Canada–Alberta Implementation Plan for Oil Sands Monitoring (JOSM). The satellite/aircraft comparisons over this region during this period produced errors of (i) +0.08 ± 0.25 ppbv for NH3, (ii) +7.5 ± 23 ppbv for CO, (iii) +0.19 ± 0.46 ppbv for HCOOH, and (iv) −1.1 ± 0.39 ppbv for CH3OH. These values mostly agree with previously estimated retrieval errors; however, the relatively large negative bias in CH3OH and the significantly greater positive bias for larger HCOOH and CO values observed during this study warrant further investigation. Satellite and aircraft ammonia observations during the field campaign are also used in an initial effort to perform preliminary evaluations of Environment Canada's Global Environmental Multi-scale – Modelling Air quality and CHemistry (GEM-MACH) air quality modelling system at high resolution (2.5 × 2.5 km2). These initial results indicate a model underprediction of ~ 0.6 ppbv (~ 60 %) for NH3, during the field campaign period. The TES/model CO comparison differences are ~ +20 ppbv (~ +20 %), but given that under these conditions the TES/aircraft comparisons also show a small positive TES CO bias indicates that the overall model underprediction of CO is closer to ~ 10 % at 681 hPa (~ 3 km) during this period.


2018 ◽  
Vol 33 (3) ◽  
pp. 521-536 ◽  
Author(s):  
Ayres Geraldo Loriato ◽  
Nadir Salvador ◽  
Ayran Ayres Barbosa Loriato ◽  
Anton Sokolov ◽  
Antonio Paula Nascimento ◽  
...  

Resumo A poluição atmosférica proveniente das atividades antropogênicas tem provocado incômodo à população da Região Metropolitana da Grande Vitória (RGV), Espirito Santo, Brasil. Muitos pacientes como asmáticos, alérgicos, químico sensíveis, cardiacos, pessoas com acidente vascular cerebral (AVC), diabetes, grávidas, idosos e crianças são especialmente suscetíveis a uma pobre qualidade do ar. As complexas interações dos poluentes atmosféricos podem ser entendidas usando modelos de transporte químico, os quais necessitam de inventários de emissões para prover a alocação espacial e temporal das emissões. Na RGV, o Instituto Estadual do Meio Ambiente (IEMA) disponibilizou o inventário de emissões da região para o ano de 2010. Nesse artigo foi realizada uma adaptação do inventário de fontes regional para o Sparse Matrix Operator Kernel Emissions (SMOKE) de modo a ser utilizado em modelos de qualidade do ar (MQA) como o Community Multi-scale Air Quality (CMAQ) Modeling System e outros modelos fotoquímicos. Foram obtidos valores simulados elevados referentes às emissões de ressuspensão em vias, apontando uma possível falha do inventário neste tipo de fonte. Utilizando os fatores de emissão médios de Abu-Allaban et al. (2003) para a ressuspensão das vias locais, foram obtidos resultados mais condizentes aos atuais níveis de concentrações de partículas monitorados na RGV.


Author(s):  
Carmen Leane NICOLESCU ◽  
Daniel DUNEA ◽  
Virgil MOISE ◽  
Gabriel GORGHIU

Environmental pollution of urban areas is one of the key factors that local agencies and authorities have to consider in the decision-making process. To succeed a sustainable management of the environment, there is necessary to use different kinds of instruments in order to evaluate and forecast the evolution of the environmental state. Understanding temporal and spatial distribution of air quality is essential in making decisions for regional management. In this paper a model for urban air quality forecasting using time series of monthly averages concentrations is presented. Sedimentable dusts (SD), total suspended particulates (TSP), nitrogen dioxide (NO2), and sulfur dioxide (SO2), imissions, recorded between 1995 and 2008 in the urban area of Târgovişte city are used as inputs in the model. The measured pollutant data from the local Environmental Agency database were statistically analyzed in time series including monthly patterns using the auto-regressive integrated moving average (ARIMA) method, linear trend, simple moving average of three terms and simple exponential smoothing. There was discussed the efficiency of using this method in forecasting the environmental air quality. In general, ARIMA technique scores well in predicting the analysed environmental air quality parameters.


2021 ◽  
Author(s):  
Igor Burstyn ◽  
Geoffrey H. Donovan ◽  
Yvonne L. Michael ◽  
Sarah Jovan

Polycyclic aromatic hydrocarbons (PAHs) are a component of air pollutants that are costly to measure using traditional air-quality monitoring methods. We used an epiphytic bio-indicator (moss genus: Orthotrichum) to cost-effectively evaluate atmospheric deposition of PAHs in Portland, Oregon in May 2013. However, it is unclear if measurements derived from these bioindicators are good proxies for human exposure. To address this question, we simultaneously, measured PAH-DNA adducts in blood samples of non-smokers residing close to the sites of moss measurements. We accounted for individual determinants of PAH uptake that are not related to environmental air quality through questionnaires, e.g., wood fires, consumption of barbecued and fried meats. Correlation and linear regression (to control for confounders from the lifestyle factors) evaluated the associations. We did not observe evidence of an association between PAH levels in moss and PAH-DNA adducts in blood of nearby residents, but higher level of adduct were evident in those who used wood fire in their houses in the last 48 hours. It remains to be determined whether bio-indicators in moss can be used for human health risk assessment.


2021 ◽  
Author(s):  
Ivo Suter ◽  
Lukas Emmenegger ◽  
Dominik Brunner

<p>Reducing air pollution, which is the world's largest single environmental health risk, demands better-informed air quality policies. Consequently, multi-scale air quality models are being developed with the goal to resolve cities. One of the major challenges in such model systems is to accurately represent all large- and regional-scale processes that may critically determine the background concentration levels over a given city. This is particularly true for longer-lived species such as aerosols, for which background levels often dominate the concentration levels, even within the city. Furthermore, the heterogeneous local emissions, and complex dispersion in the city have to be considered carefully.</p><p>In this study, the impact of processes across a wide range of scales on background concentrations over Switzerland and the city of Zurich was modelled by performing one year of nested European and Swiss national COSMO-ART simulations to obtain adequate boundary conditions for gas-phase chemical, aerosol and meteorological conditions for city-resolving simulations. The regional climate chemistry model COSMO-ART (Vogel et al. 2009) was used in a 1-way coupled mode. The outer, European, domain, which was driven by chemical boundary conditions from the global MOZART model, had a 6.6 km horizontal resolution and the inner, Swiss, domain one of 2.2 km. For the city scale, a catalogue of more than 1000 mesoscale flow patterns with 100 m resolution was created with the model GRAMM, based on a discrete set of atmospheric stabilities, wind speeds and directions, accounting for the influence of land-use and topography. Finally, the flow around buildings was solved with the CFD model GRAL forced at the boundaries by GRAMM. Subsequently, Lagrangian dispersion simulations for a set of air pollutants and emission sectors (traffic, industry, ...) based on extremely detailed building and emission data was performed in GRAL. The result of this nested procedure is a library of 3-dimensional air pollution maps representative of hourly situations in Zurich (Berchet et al. 2017). From these pre-computed situations, time-series and concentration maps can be obtained by selecting situations according to observed or modelled meteorological conditions.</p><p>The results were compared to measurements from air quality monitoring network stations. Modelled concentrations of NO<sub>x</sub> and PM compared well to measurements across multiple locations, provided background conditions were considered carefully. The nested multi-scale modelling system COSMO-ART/GRAMM/GRAL can adequately reproduce local air quality and help understanding the relative contributions of local versus distant emissions, as well as fill the space between precise point measurements from monitoring sites. This information is useful for research, policy-making, and epidemiological studies particularly under the assumption that exceedingly high concentrations become more and more localised phenomenon in the future.</p>


Author(s):  
Liang Ge ◽  
Kunyan Wu ◽  
Yi Zeng ◽  
Feng Chang ◽  
Yaqian Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document