scholarly journals Combined impacts of future land-use and climate stressors on water resources and quality in groundwater and surface waterbodies of the upper Thames river basin, UK

2018 ◽  
Vol 631-632 ◽  
pp. 962-986 ◽  
Author(s):  
M.G. Hutchins ◽  
C. Abesser ◽  
C. Prudhomme ◽  
J.A. Elliott ◽  
J.P. Bloomfield ◽  
...  
Water ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2661
Author(s):  
Yongfen Zhang ◽  
Chongjun Tang ◽  
Aizhong Ye ◽  
Taihui Zheng ◽  
Xiaofei Nie ◽  
...  

Quantitatively figuring out the effects of climate and land-use change on water resources and their components is essential for water resource management. This study investigates the effects of climate and land-use change on blue and green water and their components in the upper Ganjiang River basin from the 1980s to the 2010s by comparing the simulated changes in blue and green water resources by using a Soil and Water Assessment Tool (SWAT) model forced by five climate and land-use scenarios. The results suggest that the blue water flow (BWF) decreased by 86.03 mm year−1, while green water flow (GWF) and green water storage (GWS) increased by 8.61 mm year−1 and 12.51 mm year−1, respectively. The spatial distribution of blue and green water was impacted by climate, wind direction, topography, and elevation. Climate change was the main factor affecting blue and green water resources in the basin; land-use change had strong effects only locally. Precipitation changes significantly amplified the BWF changes. The proportion of surface runoff in BWF was positively correlated with precipitation changes; lateral flow showed the opposite tendency. Higher temperatures resulted in increased GWF and decreased BWF, both of which were most sensitive to temperature increases up to 1 °C. All agricultural land and forestland conversion scenarios resulted in decreased BWF and increased GWF in the watershed. GWS was less affected by climate and land-use change than GWF and BWF, and the trends in GWS were not significant. The study provides a reference for blue and green water resource management in humid areas.


2019 ◽  
Vol 11 (2) ◽  
pp. 338 ◽  
Author(s):  
Leting Lyu ◽  
Xiaorui Wang ◽  
Caizhi Sun ◽  
Tiantian Ren ◽  
Defeng Zheng

Based on a land use interpretation and distributed hydrological model, soil and water assessment tool (SWAT), this study simulated the hydrological cycle in Xihe River Basin in northern China. In addition, the influence of climate variability and land use change on green water resources in the basin from 1995 to 2015 was analyzed. The results show that (1) The ENS (Nash-Sutcliffe model efficiency coefficient) and R2 (coefficient of determination) were 0.94 and 0.89, respectively, in the calibration period, and 0.89 and 0.88, respectively, in the validation period. These indicate high simulation accuracy; (2) Changes in green water flow and green water storage due to climate variability accounted for increases of 2.07 mm/a and 1.28 mm/a, respectively. The relative change rates were 0.49% and 0.9%, respectively, and the green water coefficient decreased by 1%; (3) Changes in green water flow and green water storage due to land use change accounted for increases of 69.15 mm and 48.82 mm, respectively. The relative change rates were 16.4% and 37.2%, respectively, and the green water coefficient increased by 10%; (4) Affected by both climate variability and land use change, green water resources increased by 121.3 mm and the green water coefficient increased by 9% in the Xihe River Basin. It is noteworthy that the influence of land use change was greater than that of climate variability.


2018 ◽  
Vol 10 (9) ◽  
pp. 3277 ◽  
Author(s):  
Javier Senent-Aparicio ◽  
Sitian Liu ◽  
Julio Pérez-Sánchez ◽  
Adrián López-Ballesteros ◽  
Patricia Jimeno-Sáez

Climate change and the land-use and land-cover changes (LULC) resulting from anthropic activity are important factors in the degradation of an ecosystem and in the availability of a basin’s water resources. To know how these activities affect the quantity of the water resources of basins, such as the Segura River Basin, is of vital importance. In this work, the Soil and Water Assessment Tool (SWAT) was used for the study of the abovementioned impacts. The model was validated by obtaining a Nash–Sutcliffe efficiency (NSE) of 0.88 and a percent bias (PBIAS) of 17.23%, indicating that SWAT accurately replicated monthly streamflow. Next, land-use maps for the years of 1956 and 2007 were used to establish a series of scenarios that allowed us to evaluate the effects of these activities on both joint and individual water resources. A reforestation plan applied in the basin during the 1970s caused that the forest area had almost doubled, whereas the agricultural areas and shrubland had been reduced by one-third. These modifications, together with the effect of climate change, have led to a decrease of 26.3% in the quantity of generated water resources, not only due to climate change but also due to the increase in forest area.


2010 ◽  
Vol 24 (9) ◽  
pp. 1123-1132 ◽  
Author(s):  
Lei Wang ◽  
Zhongjing Wang ◽  
Toshio Koike ◽  
Hang Yin ◽  
Dawen Yang ◽  
...  

2016 ◽  
Vol 48 (2) ◽  
pp. 416-430 ◽  
Author(s):  
Abubaker Omer ◽  
Weiguang Wang ◽  
Amir K. Basheer ◽  
Bin Yong

Understanding the linear and nonlinear responses of runoff to environmental change is crucial to optimally manage water resources in river basins. This study proposes a generic framework-based hydrological model (Soil and Water Assessment Tool (SWAT)) and two approaches, to comprehensively assess the impacts of anthropogenic activities and climate variability on runoff over the representative Hutuo River Basin (HRB), China. Results showed that SWAT performed well in capturing the runoff trend in HRB; however, it exhibited better performance for the calibration period than for the validation. During 1961–2000, about 26.06% of the catchment area was changed, mainly from forest to farmland and urban, and the climate changed to warmer and drier. The integrated effects of the anthropogenic activities and climate variability decreased annual runoff in HRB by 96.6 mm. Direct human activities were responsible for 52.16% of runoff reduction. Climate (land use) decreased runoff by 45.30% (2.06%), whereas the combined (land use + climate) impact resulted in more runoff decrease, by 47.84%. Land use–climate interactive effect is inherent in HRB and decreased runoff by 1.02%. The proposed framework can be applied to improve the current understanding of runoff variation in river basins, for supporting sustainable water resources management strategies.


Sign in / Sign up

Export Citation Format

Share Document