scholarly journals Assessing Impacts of Climate Variability and Reforestation Activities on Water Resources in the Headwaters of the Segura River Basin (SE Spain)

2018 ◽  
Vol 10 (9) ◽  
pp. 3277 ◽  
Author(s):  
Javier Senent-Aparicio ◽  
Sitian Liu ◽  
Julio Pérez-Sánchez ◽  
Adrián López-Ballesteros ◽  
Patricia Jimeno-Sáez

Climate change and the land-use and land-cover changes (LULC) resulting from anthropic activity are important factors in the degradation of an ecosystem and in the availability of a basin’s water resources. To know how these activities affect the quantity of the water resources of basins, such as the Segura River Basin, is of vital importance. In this work, the Soil and Water Assessment Tool (SWAT) was used for the study of the abovementioned impacts. The model was validated by obtaining a Nash–Sutcliffe efficiency (NSE) of 0.88 and a percent bias (PBIAS) of 17.23%, indicating that SWAT accurately replicated monthly streamflow. Next, land-use maps for the years of 1956 and 2007 were used to establish a series of scenarios that allowed us to evaluate the effects of these activities on both joint and individual water resources. A reforestation plan applied in the basin during the 1970s caused that the forest area had almost doubled, whereas the agricultural areas and shrubland had been reduced by one-third. These modifications, together with the effect of climate change, have led to a decrease of 26.3% in the quantity of generated water resources, not only due to climate change but also due to the increase in forest area.

Water ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1313
Author(s):  
George Akoko ◽  
Tu Hoang Le ◽  
Takashi Gomi ◽  
Tasuku Kato

The soil and water assessment tool (SWAT) is a well-known hydrological modeling tool that has been applied in various hydrologic and environmental simulations. A total of 206 studies over a 15-year period (2005–2019) were identified from various peer-reviewed scientific journals listed on the SWAT website database, which is supported by the Centre for Agricultural and Rural Development (CARD). These studies were categorized into five areas, namely applications considering: water resources and streamflow, erosion and sedimentation, land-use management and agricultural-related contexts, climate-change contexts, and model parameterization and dataset inputs. Water resources studies were applied to understand hydrological processes and responses in various river basins. Land-use and agriculture-related context studies mainly analyzed impacts and mitigation measures on the environment and provided insights into better environmental management. Erosion and sedimentation studies using the SWAT model were done to quantify sediment yield and evaluate soil conservation measures. Climate-change context studies mainly demonstrated streamflow sensitivity to weather changes. The model parameterization studies highlighted parameter selection in streamflow analysis, model improvements, and basin scale calibrations. Dataset inputs mainly compared simulations with rain-gauge and global rainfall data sources. The challenges and advantages of the SWAT model’s applications, which range from data availability and prediction uncertainties to the model’s capability in various applications, are highlighted. Discussions on considerations for future simulations such as data sharing, and potential for better future analysis are also highlighted. Increased efforts in local data availability and a multidimensional approach in future simulations are recommended.


2016 ◽  
Vol 48 (2) ◽  
pp. 416-430 ◽  
Author(s):  
Abubaker Omer ◽  
Weiguang Wang ◽  
Amir K. Basheer ◽  
Bin Yong

Understanding the linear and nonlinear responses of runoff to environmental change is crucial to optimally manage water resources in river basins. This study proposes a generic framework-based hydrological model (Soil and Water Assessment Tool (SWAT)) and two approaches, to comprehensively assess the impacts of anthropogenic activities and climate variability on runoff over the representative Hutuo River Basin (HRB), China. Results showed that SWAT performed well in capturing the runoff trend in HRB; however, it exhibited better performance for the calibration period than for the validation. During 1961–2000, about 26.06% of the catchment area was changed, mainly from forest to farmland and urban, and the climate changed to warmer and drier. The integrated effects of the anthropogenic activities and climate variability decreased annual runoff in HRB by 96.6 mm. Direct human activities were responsible for 52.16% of runoff reduction. Climate (land use) decreased runoff by 45.30% (2.06%), whereas the combined (land use + climate) impact resulted in more runoff decrease, by 47.84%. Land use–climate interactive effect is inherent in HRB and decreased runoff by 1.02%. The proposed framework can be applied to improve the current understanding of runoff variation in river basins, for supporting sustainable water resources management strategies.


2020 ◽  
Vol 13 (2) ◽  
pp. 576
Author(s):  
Letícia Lopes Martins ◽  
Wander Araújo Martins ◽  
Jener Fernando Leite De Moraes ◽  
Mário José Pedro Júnior ◽  
Isabella Clerici De Maria

A dificuldade na gestão de recursos hídricos aliada à dinâmica do uso e ocupação do solo em bacias hidrográficas agrícolas são fatores relevantes para a conservação da água e solo. A gestão de bacias hidrográficas, bem como o monitoramento de cenários de expansão agrícola e mudança no uso do solo, podem se beneficiar de ferramentas de modelagem hidrossedimentológica, como o SWAT (Soil and Water Assessment Tool). Entretanto, para que os resultados obtidos sejam confiáveis, os modelos precisam ser calibrados. Objetivou-se, neste trabalho, calibrar e validar o modelo SWAT, para a variável vazão, tendo como base a bacia hidrográfica do Ribeirão do Pinhal, Limeira -São Paulo, que se caracteriza pela expansão da cana-de-açúcar sobre áreas citrícolas. Dados de vazão de um posto fluviométrico localizado no exutório da bacia foram utilizados para a calibração e validação, a partir de séries temporais diferentes.  Utilizou-se o software QSWAT para a simulação hidrológica e o SWAT-CUP para a calibração e validação do modelo. O modelo foi calibrado e validado resultando nos seguintes índices estatísticos NSE=0,64; PBIAS=15,2 e RSR=0,60 para calibração e NSE=0,68 PBIAS=-2,8 e RSR=0,56 para a validação. O ajuste de parâmetros do SWAT (USLE_P, USLE_C, CN2) e do calendário de operações da cana-de-açúcar em acordo com a situação real da bacia foi necessário para a calibração do modelo. Os resultados indicam que o modelo SWAT subestima as vazões extremas, no entanto, dentro de faixa aceitável. O SWAT, após a calibração, pode ser utilizado na gestão de recursos hídricos na bacia do Ribeirão do Pinhal.Hydrological calibration of the SWAT model in a watershed characterized by the expansion of sugarcane cultivationA B S T R A C TThe difficulty in water resources management combined with the dynamics of land use and occupation in agricultural watersheds are relevant factors for water and soil conservation. River basin management, as well as monitoring scenarios of agricultural expansion and land-use change, can benefit from hydrossedimentological modeling tools such as the SWAT (Soil and Water Assessment Tool). However, for the results to be reliable, the models must be calibrated. The objective of this study was to calibrate and validate the SWAT model for the flow variable, based on the Ribeirão do Pinhal watershed, Limeira-São Paulo, which is characterized by the expansion of sugarcane over citrus areas. Flow data from a fluviometric station located in the basin's outfall were used for calibration and validation from different time series. QSWAT software was used for hydrological simulation and SWAT-CUP for model calibration and validation. The model was calibrated and validated resulting in the following statistical indices NSE = 0.64; PBIAS = 15.2 and RSR = 0.60 for calibration and NSE = 0.68 PBIAS = -2.8 and RSR = 0.56 for validation. Adjustment of SWAT parameters (USLE_P, USLE_C, and CN2) and the sugarcane operation schedule according to the actual basin situation was necessary for model calibration. The results indicate that the SWAT model underestimates the extreme flow rates, however, within an acceptable range. After calibration, the SWAT can be used to manage water resources in the Ribeirão do Pinhal basin.Keywords: Hydrologic simulation; land use; flow rate.


2012 ◽  
Vol 32 ◽  
pp. 1-7 ◽  
Author(s):  
R. Benning ◽  
K. Schua ◽  
K. Schwärzel ◽  
K. H. Feger

Abstract. The aim of this study was to assess the impact of land-use on inputs of nitrogen, phosphorus, and DOC into the inflow of the Lehnmühle reservoir (drinking water supply). Land-use in the study area is dominated by forest, with smaller proportions of grassland and crops. Water quality was analyzed for the hydrological years 2010 and 2011 at the outlets of three small catchments with homogenous land-use (crops, grassland and forest) and at the outlet of the watershed. The highest nitrogen and phosphorus concentrations were observed in the streams draining the agricultural areas, and the lowest concentrations were found in the forest catchment. The DOC concentration was highest at the outlet of the watershed whereas the concentrations in the small homogeneous catchments were lower. The information collected about the land-use dependent matter exports in these study areas will be used for climate change impact modeling with the Soil and Water Assessment Tool.


2020 ◽  
Author(s):  
Jing Tian ◽  
Shenglian Guo ◽  
Chong-Yu Xu

<p>As a link between the atmosphere and the earth’s surface, the hydrological cycle is impacted by both climate change and land use/cover change (LUCC). For most basins around the world, the co-variation of climate change and LUCC will continue in the future, which highlights the significance to explore the temporal-spatial distribution and variation mechanism of runoff and to improve our ability in water resources planning and management. Therefore, the purpose of this study is to propose a framework to examine the response of runoff to climate change and LUCC under different future scenarios. Firstly, the future climate scenarios under BCC-CSM1.1 and BNU-ESM are both downscaled and bias-corrected by the Daily bias correction (DBC) method, meanwhile, the future LUCC scenarios are predicted by the Cellular Automaton-Markov (CA-Markov) model according to the integrated basin plans of future land use. Then, based on the baseline scenario S0 (meteorological data from 1966 to 2005 and current situation LUCC2010), the following three scenarios are set with different combinations of future climate land-use situations, i.e., S1: only climate change scenario; S2: only the LUCC scenario; S3: climate and LUCC co-variation scenario. Lastly, the Soil and Water Assessment Tool (SWAT) model is used to simulate the hydrological process and quantify the impacts of climate change and LUCC on the runoff yield. The proposed framework is applied to the Han River basin in China. Results show that: (1) compared with the base period (1966-2005), the annual rainfall, daily maximum, and minimum air temperature during 2021-2060 will have an increase of 4.0%, 1.8℃, 1.6℃ in RCP4.5 while 3.7%, 2.5℃, 2.3℃ in RCP8.5, respectively; (2) from 2010 to 2050, the forest land and construction land in the Han River basin will have an increase of 2.8% and 1.2%, respectively, while that of farmland and grassland will have a decrease of 1.5% and 2.5%, respectively; (3) comparing with the single climate change or LUCC scenario, the co-variation scenario possesses the largest uncertainty in runoff projection. Under the two concentration paths, there is a consistent upward change in future runoff (2021-2060) of the studied basin compared with that in the base period, furthermore, the increase rate in RCP4.5 (+5.10%) is higher than that in RCP8.5 (+2.67%). The results of this study provide a useful reference and help for water resources and land use management in the Han River basin.</p>


Sign in / Sign up

Export Citation Format

Share Document