scholarly journals Residual municipal solid waste as co-substrate at wastewater treatment plants: An assessment of methane yield, dewatering potential and microbial diversity

2022 ◽  
Vol 804 ◽  
pp. 149936
Author(s):  
Alice do Carmo Precci Lopes ◽  
Christian Ebner ◽  
Frédéric Gerke ◽  
Marco Wehner ◽  
Sabine Robra ◽  
...  
Author(s):  
O.O. Seryogin ◽  
O.V. Vasylenko ◽  
Frank J. Riedel ◽  
Helmut Aigner

A concept has been developed for processing of biologically active sludge from municipal wastewater treatment plants in combination with the organic fraction of municipal solid waste using the BioTech Process. The complex, which makes it possible to implement the proposed concept, does not require additional land plots, and classified secondary raw materials, biogas and high-quality biofertilizers suitable for use in the agricultural industry are the products of its activity. The proposed concept will allow solving several problems at once due to the construction of a waste recycling plant on the territory of the filtration zone of the existing water treatment facilities. The new processing plant will be used not only for processing and sorting of solid waste, but also for treating sludge from wastewater treatment plants, together with organic waste obtained from solid waste in the BioTech Process to obtain biogas and biofertilizers, the so-called compost. The new recycling plant will be environmentally friendly and, among other benefits, will be able to process of municipal solid waste with preliminary sorting and separation of recyclable materials. Bibl. 9, Fig. 1.


2022 ◽  
Vol 177 ◽  
pp. 106003
Author(s):  
Ning Li ◽  
Mengting He ◽  
Xukai Lu ◽  
Beibei Yan ◽  
Xiaoguang Duan ◽  
...  

2017 ◽  
Vol 245 ◽  
pp. 1058-1066 ◽  
Author(s):  
Yong Qin ◽  
Haoshu Wang ◽  
Xiangru Li ◽  
Jay Jiayang Cheng ◽  
Weixiang Wu

Processes ◽  
2020 ◽  
Vol 8 (10) ◽  
pp. 1224
Author(s):  
Nwabunwanne Nwokolo ◽  
Patrick Mukumba ◽  
KeChrist Obileke ◽  
Matthew Enebe

Anaerobic digestion is an efficient technology for a sustainable conversion of various organic wastes such as animal manure, municipal solid waste, agricultural residues and industrial waste into biogas. This technology offers a unique set of benefits, some of which include a good waste management technique, enhancement in the ecology of rural areas, improvement in health through a decrease of pathogens and optimization of the energy consumption of communities. The biogas produced through anaerobic digestion varies in composition, but it consists mainly of carbon dioxide methane together with a low quantity of trace gases. The variation in biogas composition are dependent on some factors namely the substrate type being digested, pH, operating temperature, organic loading rate, hydraulic retention time and digester design. However, the type of substrate used is of greater interest due to the direct dependency of microorganism activities on the nutritional composition of the substrate. Therefore, the aim of this review study is to provide a detailed analysis of the various types of organic wastes that have been used as a substrate for the sustainable production of biogas. Biogas formation from various substrates reported in the literature were investigated, an analysis and characterization of these substrates provided the pro and cons associated with each substrate. The findings obtained showed that the methane yield for all animal manure varied from 157 to 500 mL/gVS with goat and pig manure superseding the other animal manure whereas lignocellulose biomass varied from 160 to 212 mL/gVS. In addition, organic municipal solid waste and industrial waste showed methane yield in the ranges of 143–516 mL/gVS and 25–429 mL/gVS respectively. These variations in methane yield are primarily attributed to the nutritional composition of the various substrates.


2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Rocio Vicentin ◽  
Fernando Fdz-Polanco ◽  
Maria Fdz-Polanco

The process simulation performed in the present study aimed at investigating energetically self-sufficient wastewater treatment plant of 500,000 population equivalents. To implement this, three different scenarios were evaluated using computational tools named GPS-X® and SuperPro®. They were designed based on municipal wastes recovery to energy generation and its utilisation within the facility. An anaerobic/anoxic/oxic process for biological treatment of wastewater was considered and mesophilic anaerobic digestion at different scenarios (1) primary sludge (PS) with waste activated sludge (WAS), (2) PS with thermally hydrolysed WAS, and (3) PS with WAS and organic fractions derived from municipal solid waste. The results from scenario 1 and scenario 2 showed only enough thermal energy to meet their demand (they reach only 44 and 52% of electrical self-sufficiency, respectively), while positive net thermal and electrical energy result in scenario 3 from codigestion of sewage sludge and the organic fraction of municipal solid waste. The main limitation of tools used is their lack of sensitivity to economies of scale and their dependence on real data used for process design to obtain more accurate results.


1985 ◽  
Vol 107 (3) ◽  
pp. 402-405 ◽  
Author(s):  
S. Ghosh

This paper presents the development of a novel solid-phase methane fermentation process involving acidic bioleachate production from an organic bed and biomethanation of the bed-liquefaction products in an external methane digester. Process operation with municipal solid waste showed that about 81 percent of the biodegradable volatile solids (VS) could be stabilized during three months of batch operation to afford a methane yield of 0.21 std m3 / kg VS added under ambient (∼25°C) conditions; this compares favorably with an ultimate mesophilic (35°C) methane yield of 0.26 std m3 / kg VS added.


2007 ◽  
Vol 27 (3) ◽  
pp. 406-414 ◽  
Author(s):  
Åsa Davidsson ◽  
Christopher Gruvberger ◽  
Thomas H. Christensen ◽  
Trine Lund Hansen ◽  
Jes la Cour Jansen

Sign in / Sign up

Export Citation Format

Share Document