Impact of Urban Cool Island measures on outdoor climate and pedestrian comfort: Simulations for a new district of Toulouse, France

2016 ◽  
Vol 26 ◽  
pp. 9-26 ◽  
Author(s):  
Tathiane A.L. Martins ◽  
Luc Adolphe ◽  
Marion Bonhomme ◽  
Frédéric Bonneaud ◽  
Serge Faraut ◽  
...  
2009 ◽  
Vol 44 (12) ◽  
pp. 2368-2377 ◽  
Author(s):  
Jan Van den Bulcke ◽  
Joris Van Acker ◽  
Jordi De Smet
Keyword(s):  

2009 ◽  
pp. 61-66 ◽  
Author(s):  
Bram Vanthoor ◽  
Cecilia Stanghellini ◽  
Eldert van Henten ◽  
Pieter de Visser

Microbiome ◽  
2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Eva Lena F. Estensmo ◽  
Luis Morgado ◽  
Sundy Maurice ◽  
Pedro M. Martin-Sanchez ◽  
Ingeborg B. Engh ◽  
...  

Abstract Background Children spend considerable time in daycare centers in parts of the world and are exposed to the indoor micro- and mycobiomes of these facilities. The level of exposure to microorganisms varies within and between buildings, depending on occupancy, climate, and season. In order to evaluate indoor air quality, and the effect of usage and seasonality, we investigated the spatiotemporal variation in the indoor mycobiomes of two daycare centers. We collected dust samples from different rooms throughout a year and analyzed their mycobiomes using DNA metabarcoding. Results The fungal community composition in rooms with limited occupancy (auxiliary rooms) was similar to the outdoor samples, and clearly different from the rooms with higher occupancy (main rooms). The main rooms had higher abundance of Ascomycota, while the auxiliary rooms contained comparably more Basidiomycota. We observed a strong seasonal pattern in the mycobiome composition, mainly structured by the outdoor climate. Most markedly, basidiomycetes of the orders Agaricales and Polyporales, mainly reflecting typical outdoor fungi, were more abundant during summer and fall. In contrast, ascomycetes of the orders Saccharomycetales and Capnodiales were dominant during winter and spring. Conclusions Our findings provide clear evidences that the indoor mycobiomes in daycare centers are structured by occupancy as well as outdoor seasonality. We conclude that the temporal variability should be accounted for in indoor mycobiome studies and in the evaluation of indoor air quality of buildings.


2004 ◽  
Vol 8 (1) ◽  
pp. 83-94
Author(s):  
Angela Kalagasidis-Sasic

The movement of air in and through the building envelope often plays a leading role in the transport of heat and moisture into the building. It is caused by pressure and temperature variations around the building envelope inbuilt ventilation system, occupancy, etc. In order to improve the energy consumption, alternative designs for the ventilation systems are considered. One of them is a dynamically insulated wall as an inlet unit for the supplying air. In order to predict the performance of a dynamically insulated wall, it is necessary to make an analysis of the building as a system. This paper presents such system analysis which takes into account the interaction between the building components and indoor and outdoor climate, both in terms of the air leakage and heat and mass transfer to and from the building components. It is shown that, in the presence of air leakages (unintentional openings) in the enclosure of the building, the efficiency of the dynamic insulation is significantly decreased.


2021 ◽  
Vol 9 (1) ◽  
pp. 40-53
Author(s):  
Boris Bielek ◽  
Daniel Szabó ◽  
Josip Klem ◽  
Kristína Kaniková

Abstract The article deals with the issue of double skin transparent facades as a new technological-operational system of transparent exterior walls. Especially of high-rise buildings, which with its operating modes ingeniously uses a renewable source of solar energy to reduce the energy needs of the building. The basic precondition for the correct function of the double skin facade is its functional aerodynamics in any climatic conditions of the outdoor climate. In the critical state of windlessness, the aerodynamic quantification of a double skin facade is the total aerodynamic resistance of the cavity, which consists of the aerodynamic frictional resistances along the length of the air flow line and local aerodynamic resistances of the cavity. The article analyses the functional aerodynamics on two frequented types of double skin facades with a narrow type and corridor type cavity. At the end it confronts functional aerodynamics with the results of their temperature, aerodynamic and energy regime obtained from in-situ experiments.


2021 ◽  
Vol 19 (3) ◽  
pp. 628-641
Author(s):  
F Faridah ◽  
Sentagi Utami ◽  
Ressy Yanti ◽  
S Sunarno ◽  
Emilya Nurjani ◽  
...  

This paper discusses an analysis to obtain the optimal thermal sensor placement based on indoor thermal characteristics. The method relies on the Computational Fluid Dynamics (CFD) simulation by manipulating the outdoor climate and indoor air conditioning (AC) system. First, the alternative sensor's position is considered the optimum installation and the occupant's safety. Utilizing the Standardized Euclidean Distance (SED) analysis, these positions are then selected for the best position using the distribution of the thermal parameters' values data at the activity zones. Onsite measurement validated the CFD model results with the maximum root means square error, RMSE, between both data sets as 0.8°C for temperature, the relative humidity of 3.5%, and an air velocity of 0.08m/s, due to the significant effect of the building location. The Standardized Euclidean Distance (SED) analysis results are the optimum sensor positions that accurately, consistently, and have the optimum % coverage representing the thermal condition at 1,1m floor level. At the optimal positions, actual sensors are installed and proven to be valid results since sensors could detect thermal variables at the height of 1.1m with SED validation values of 2.5±0.3, 2.2±0.6, 2.0±1.1, for R15, R33, and R40, respectively.


2016 ◽  
Vol 861 ◽  
pp. 213-220 ◽  
Author(s):  
Miroslav Čekon ◽  
Richard Slávik ◽  
Karel Struhala ◽  
Marian Formánek

The passive solar test facilities have recently been created in many research centers all over the world to analyse dynamic outdoor phenomena on buildings and their components. The main objective of these research activities is primarily to evolve a methodology, improve test methods, validate numerical models and measure real thermodynamic properties of building components under outdoor climate conditions. An integration of advanced material solutions into buildings need to be investigated within specific conditions related specifically to outdoor test methods. A research project on Contemporary concepts of climatically active solar facades at the Brno University of Technology does have an ambition to create an experimental full-scale test cell for research of thermal aspects in progressive advances of future solar façade concepts exposed to the real climate conditions. This paper describes the design optimization phase preceding the test cell assembly. This phase includes the analysis of energy and thermal properties based on parametric study features. Computer simulations based on finite element and volume methods are involved in the optimization process. The proposed optimized test cell design is confronted with parametrization of typical thermal aspects to present final test cell demonstration.


2021 ◽  
Vol 206 ◽  
pp. 108366
Author(s):  
Xinying Fan ◽  
Bin Chen ◽  
Shibo Wang ◽  
Joe R. Zhao ◽  
Helen J. Sun

2019 ◽  
Vol 887 ◽  
pp. 411-418
Author(s):  
Peter Juras ◽  
Radoslav Ponechal ◽  
Daniela Štaffenová

This paper deals with creating of the unique measurement units on the building façade, which enable the possibility to conduct a full-scale measurement of the outdoor climate parameters around the building. The façade of the Research center building, which is a part of University of Zilina campus, is equipped with 36 weather stations to measure the outdoor climate conditions and impact of the building on the approaching wind flow, air temperature distribution, solar radiance impact on the façade etc.In this article, the change of temperatures within the time and place on the facade (sides, position, time), is monitored. This takes into account the surroundings of the building and the temperature on the façade and comparison to the measured “basic” air temperature.


Sign in / Sign up

Export Citation Format

Share Document