Improving the suitability of selected thermal indices for predicting outdoor thermal sensation in Tehran

2021 ◽  
pp. 103205
Author(s):  
Mohammad Haghshenas ◽  
Mohammad Hadianpour ◽  
Andreas Matzarakis ◽  
Mohammadjavad Mahdavinejad ◽  
Mojtaba Ansari
1955 ◽  
Vol 53 (1) ◽  
pp. 112-123 ◽  
Author(s):  
D. E. Hickish

SummaryWorkers in factories and a postal sorting office were questioned concerning their subjective thermal sensations, and the replies assessed according to a scale of standard sensations. Measurements of the thermal environment were made concurrently. The investigation was confined to workers engaged in light or sedentary activity during summer months in southern England.The upper limit of the comfort zone is determined in terms of the temperatures at which more than 20% of people questioned experienced thermal discomfort.Discontinuities in the linear relationships between thermal sensation, described on a numerical scale, and the thermal indices of the environment are shown to occur under conditions which suggest the onset of sweating beneath the clothing. The comfort zone is also determined in terms of these critical temperatures.The regression constants relating thermal sensation to thermal conditions are determined, and the optimum conditions for comfort are deduced. The accuracy of prediction of thermal sensation from thermal measurements is examined.The importance of clothing in requirements for thermal comfort is illustrated in two ways. Postal workers wearing regulation uniform were found to require conditions cooler than those required by factory workers wearing clothing of their own choosing. Male and female factory workers were found to require thermal conditions not significantly different, this being attributed to their selection of clothing appropriate to their personal thermal requirements.I am indebted to Prof. G. P. Crowden for granting facilities for this research and for encouragement throughout. Dr T. C. Angus and Dr T. Bedford gave valuable advice, and Mr P. J. Williams rendered technical assistance. The co-operation of the managements and workers at the factories was greatly appreciated.


Energies ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7468
Author(s):  
Timothy O. Adekunle

Colonial Revival style residences have unique architectural features amongst others. They are common multi-family residences in the United States with no or limited information about their performance. The research purpose is to assess indoor comfort, energy performance, and thermal indices in multi-family Colonial Revival style residences. The research questions include (i) Do Colonial Revival style buildings perform better than other old buildings? (ii) Do the buildings consume additional electricity than typical and other old buildings? The research examined four case studies in Hartford County, Connecticut. The investigation explored comfort surveys, monitoring, collection of actual electricity usage, and assessed thermal indices using mathematical models. The average indoor temperature of 25.4 °C and relative humidity (RH) of 61.3% are reported. About 67% of the residents are thermally comfortable. The research noted significance between thermal sensation and other variables, excluding how occupants feel about the air movement. The average number of hours of temperature exceeds 28.0 °C and 30.0 °C marks for over 11.4% and 2.5% of the time, respectively, except in one of the buildings. The mean indoor temperatures are within the applicable bands of the adaptive comfort models. The averages of actual thermal sensation vote (TSV) ranged from 3.32 to 4.37 on a 7-point sensation scale. The mean neutral temperatures varied from 24.2–25.6 °C. The average monthly electricity bill is within the national average for residences in summer, excluding in August. The mean wet-bulb globe temperature (WBGT) of 21.1–22.3 °C and summer simmer index (SSI) of 30.1–32.4 °C are calculated as feasible bands for thermal indices in the buildings. The basements are more comfortable than other spaces within the case studies. The research outcomes can be used for future developments of Colonial Revival style and other similar buildings. The study recommends interventions such as retrofit to improve the performance of some existing Colonial Revival style buildings, especially the older ones that are less insulated with outdated equipment and appliances.


2013 ◽  
Vol 13 (2) ◽  
pp. 14-149 ◽  

To describe the tourism potential of an area, not only single meteorological parameters have to be taken into account, but also thermal sensation and people’s thermal comfort. The latter can be estimated by the use of human energy balance models and the derived thermal indices, which comprise all relevant meteorological parameters like air temperature, air humidity, wind speed, and short and long wave radiation fluxes. This paper makes an attempt to assess and analyze climatological parameters and the thermal comfort of Crete, its variations and trends for the period of time 1955-2001. In addition, a definition and quantification of the island’s tourism potential is carried out. Long term data from several stations are used from the existing climatic and synoptic network of Crete, including daily mean, maximum and minimum temperature, relative humidity, wind speed, and cloud cover over the whole island, in order to derive the daily Physiologically Equivalent Temperature (PET) and precipitation. In addition, possible trends of thermal comfort and precipitation on an annual and seasonal basis are analyzed. Additionally, data of the 10-minutes climatology of the Climate Research Unit of the University of Norwich have been processed in order to create high resolution (1 km) mean monthly maps for climatological parameters such as air temperature, precipitation and Physiologically Equivalent Temperature.


2021 ◽  
Author(s):  
Christopher Marleau

Increased interest in urban thermal comfort has emerged in recent years with unpredictable weather patterns and unprecedented temperature extremes around the world. Urban modelling computer software can help with understanding interactions between built environment and microclimates. However, results of simulations can be difficult to interpret if acceptable thermal conditions for a location are unknown. Using a compound approach of field investigation and microclimate modelling for a pedestrian-only street in Toronto, Canada, this study investigates urban outdoor thermal comfort (OTC) in a cold continental climate. Four thermal indices were used to analyze field data and the results were compared with OTC research conducted in other climates. In this study, the Physiological Equivalent Temperature (PET) provided the strongest annual correlation with the pedestrian thermal sensation votes. A PET comfort range between 9°C and 24°C was found. Survey results were then used to interpret the simulated effect of urban vegetation within the case study microclimate during a summer scenario.


2021 ◽  
pp. 1420326X2098171
Author(s):  
Peihao Wu ◽  
Yuchun Zhang ◽  
Zhaosong Fang ◽  
Yafeng Gao

In addition to typical indoor and outdoor spaces, there are numerous transitional spaces in a building that are unlike indoor and outdoor spaces, where most people spend time for entertainment. There is a need to investigate the comparison between these three types of spaces, including indoor spaces, transitional spaces and outdoor spaces. In this study, the thermal responses and thermal environmental parameters of the indoor, outdoor and transitional spaces were simultaneously recorded. Values of standard effective temperature (SET*), physiologically equivalent temperature (PET) and universal thermal climate index (UTCI) were calculated, and relationships between mean thermal sensation vote (MTSV), SET*, PET and UTCI were also analysed. The results indicate that the air velocity fluctuation and mean radiant temperature of the outdoor space were more significant than those of other two spaces. The neutral thermal indices of the outdoor space were higher than those of the indoor and transitional spaces. Additionally, regression models between MTSV and thermal indices (SET*, PET and UTCI) were analysed. There are strong linear relationships between MTSV and SET* in all spaces. The linear relationships between MTSV were significant when compared with PET and UTCI. Thus, the adaption of thermal indices for evaluation of different spaces must be considered.


2021 ◽  
Author(s):  
Christopher Marleau

Increased interest in urban thermal comfort has emerged in recent years with unpredictable weather patterns and unprecedented temperature extremes around the world. Urban modelling computer software can help with understanding interactions between built environment and microclimates. However, results of simulations can be difficult to interpret if acceptable thermal conditions for a location are unknown. Using a compound approach of field investigation and microclimate modelling for a pedestrian-only street in Toronto, Canada, this study investigates urban outdoor thermal comfort (OTC) in a cold continental climate. Four thermal indices were used to analyze field data and the results were compared with OTC research conducted in other climates. In this study, the Physiological Equivalent Temperature (PET) provided the strongest annual correlation with the pedestrian thermal sensation votes. A PET comfort range between 9°C and 24°C was found. Survey results were then used to interpret the simulated effect of urban vegetation within the case study microclimate during a summer scenario.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
A. M. Abdel-Ghany ◽  
I. M. Al-Helal ◽  
M. R. Shady

To protect humans from heat stress risks, thermal comfort and heat stress potential were evaluated under arid environment, which had never been made for such climate. The thermal indices THI, WBGT, PET, and UTCI were used to evaluate thermal comfort and heat stress. RayMan software model was used to estimate the PET, and the UTCI calculator was used for UTCI. Dry and wet bulb temperatures (Td,Tw), natural wet bulb temperature (Tnw), and globe temperature (Tg) were measured in a summer day to be used in the calculation. The results showed the following. (i) The thermal sensation and heat stress levels can be evaluated by either the PET or UTCI scales, and both are valid for extremely high temperature in the arid environment. (ii) In the comfort zone, around 75% of individuals would be satisfied with the surrounding environment and feel comfortable during the whole day. (iii) Persons are exposed to strong heat stress and would feel uncomfortable most of the daytime in summer. (iv) Heat fatigue is expected with prolonged exposure to sun light and activity. (v) During the daytime, humans should schedule their activities according to the highest permissible values of the WBGT to avoid thermal shock.


2020 ◽  
Vol 29 (2) ◽  
pp. 864-872
Author(s):  
Fernanda Borowsky da Rosa ◽  
Adriane Schmidt Pasqualoto ◽  
Catriona M. Steele ◽  
Renata Mancopes

Introduction The oral cavity and pharynx have a rich sensory system composed of specialized receptors. The integrity of oropharyngeal sensation is thought to be fundamental for safe and efficient swallowing. Chronic obstructive pulmonary disease (COPD) patients are at risk for oropharyngeal sensory impairment due to frequent use of inhaled medications and comorbidities including gastroesophageal reflux disease. Objective This study aimed to describe and compare oral and oropharyngeal sensory function measured using noninstrumental clinical methods in adults with COPD and healthy controls. Method Participants included 27 adults (18 men, nine women) with a diagnosis of COPD and a mean age of 66.56 years ( SD = 8.68). The control group comprised 11 healthy adults (five men, six women) with a mean age of 60.09 years ( SD = 11.57). Spirometry measures confirmed reduced functional expiratory volumes (% predicted) in the COPD patients compared to the control participants. All participants completed a case history interview and underwent clinical evaluation of oral and oropharyngeal sensation by a speech-language pathologist. The sensory evaluation explored the detection of tactile and temperature stimuli delivered by cotton swab to six locations in the oral cavity and two in the oropharynx as well as identification of the taste of stimuli administered in 5-ml boluses to the mouth. Analyses explored the frequencies of accurate responses regarding stimulus location, temperature and taste between groups, and between age groups (“≤ 65 years” and “> 65 years”) within the COPD cohort. Results We found significantly higher frequencies of reported use of inhaled medications ( p < .001) and xerostomia ( p = .003) in the COPD cohort. Oral cavity thermal sensation ( p = .009) was reduced in the COPD participants, and a significant age-related decline in gustatory sensation was found in the COPD group ( p = .018). Conclusion This study found that most of the measures of oral and oropharyngeal sensation remained intact in the COPD group. Oral thermal sensation was impaired in individuals with COPD, and reduced gustatory sensation was observed in the older COPD participants. Possible links between these results and the use of inhaled medication by individuals with COPD are discussed.


1998 ◽  
Author(s):  
Margaret A. Kolka ◽  
Christina M. Kesick ◽  
Leslie Levine ◽  
Sharon A. McBride ◽  
Lou A. Stephenson

Sign in / Sign up

Export Citation Format

Share Document