Reliability and longitudinal change of detrital-zircon age spectra in the Snake River system, Idaho and Wyoming: An example of reproducing the bumpy barcode

2005 ◽  
Vol 182 (1-4) ◽  
pp. 101-142 ◽  
Author(s):  
Paul Karl Link ◽  
C. Mark Fanning ◽  
Luke P. Beranek
2021 ◽  
Author(s):  
Lydia M. Staisch ◽  
et al.

Figure S1: Detrital zircon age spectra from modern rivers.; Figure S2: Detrital zircon age spectra from fluvial and lacustrine sandstones; Figure S3: Shepard plots from Multi-Dimensional scaling (MDS) analysis comparing distance and disparity for four metrics of detrital zircon similarity; Figure S4: DZmix results for three hypothesized river networks; Figure S5: SRP sample location map and detrital unmixing results; Table S1: Modern and ancestral river detrital zircon sample locations, ages, and references; Table S2: U-Pb zircon age results for new modern and ancestral river sands; Table S3: Intercomparison results between modern and ancestral river sediments; Table S4: Best-fit DZmix results estimating the relative contribution of hypothesized sources to measured detrital zircon age spectra of ancestral river sands; Table S5: Best-fit DZMix results that estimate the relative contribution of Snake River Plain tributaries to Miocene-Pliocene Lake Idaho strata.


2021 ◽  
Author(s):  
Lydia M. Staisch ◽  
et al.

Figure S1: Detrital zircon age spectra from modern rivers.; Figure S2: Detrital zircon age spectra from fluvial and lacustrine sandstones; Figure S3: Shepard plots from Multi-Dimensional scaling (MDS) analysis comparing distance and disparity for four metrics of detrital zircon similarity; Figure S4: DZmix results for three hypothesized river networks; Figure S5: SRP sample location map and detrital unmixing results; Table S1: Modern and ancestral river detrital zircon sample locations, ages, and references; Table S2: U-Pb zircon age results for new modern and ancestral river sands; Table S3: Intercomparison results between modern and ancestral river sediments; Table S4: Best-fit DZmix results estimating the relative contribution of hypothesized sources to measured detrital zircon age spectra of ancestral river sands; Table S5: Best-fit DZMix results that estimate the relative contribution of Snake River Plain tributaries to Miocene-Pliocene Lake Idaho strata.


2019 ◽  
Vol 56 (3) ◽  
pp. 247-266
Author(s):  
Ian Anderson ◽  
David H. Malone ◽  
John Craddock

The lower Eocene Wasatch Formation is more than 1500 m thick in the Powder River Basin of Wyoming. The Wasatch is a Laramide synorgenic deposit that consists of paludal and lacustrine mudstone, fluvial sandstone, and coal. U-Pb geochronologic data on detrital zircons were gathered for a sandstone unit in the middle part of the succession. The Wasatch was collected along Interstate 90 just west of the Powder River, which is about 50 km east of the Bighorn Mountain front. The sandstone is lenticular in geometry and consists of arkosic arenite and wacke. The detrital zircon age spectrum ranged (n=99) from 1433-2957 Ma in age, and consisted of more than 95% Archean age grains, with an age peak of about 2900 Ma. Three populations of Archean ages are evident: 2886.6±10 Ma (24%), 2906.6±8.4 Ma (56%) and 2934.1±6.6 Ma (20%; all results 2 sigma). These ages are consistent with the age of Archean rocks exposed in the northern part of the range. The sparse Proterozoic grains were likely derived from the recycling of Cambrian and Carboniferous strata. These sands were transported to the Powder River Basin through the alluvial fans adjacent to the Piney Creek thrust. Drainage continued to the north through the basin and eventually into the Ancestral Missouri River and Gulf of Mexico. The provenance of the Wasatch is distinct from coeval Tatman and Willwood strata in the Bighorn and Absaroka basins, which were derived from distal source (>500 km) areas in the Sevier Highlands of Idaho and the Laramide Beartooth and Tobacco Root uplifts. Why the Bighorn Mountains shed abundant Eocene strata only to the east and not to the west remains enigmatic, and merits further study.


2016 ◽  
Vol 448 (1) ◽  
pp. 145-159 ◽  
Author(s):  
Tianchen He ◽  
Ying Zhou ◽  
Pieter Vermeesch ◽  
Martin Rittner ◽  
Lanyun Miao ◽  
...  

2009 ◽  
Vol 327 (1) ◽  
pp. 239-269 ◽  
Author(s):  
R. Damian Nance ◽  
J. Duncan Keppie ◽  
Brent V. Miller ◽  
J. Brendan Murphy ◽  
Jaroslav Dostal
Keyword(s):  

Author(s):  
Carl Legleiter

The Snake River is a central component of Grand Teton National Park, and this dynamic fluvial system plays a key role in shaping the landscape and creating diverse aquatic and terrestrial habitat. The river’s complexity and propensity for change make effective characterization of this resource difficult, however, and conventional, ground-based methods are simply inadequate. Remote sensing provides an appealing alternative approach that could facilitate resource management while providing novel insight on the factors controlling channel form and behavior. In this study, we evaluate the potential to measure the morphology and dynamics of a large, complex river system such as the Snake using optical image data. Initially, we made use of existing, publicly available images and basic digital aerial photography acquired in August 2010. Analysis to date has focused on estimating flow depths from these data, and preliminary results indicate that remote bathymetric mapping is feasible but not highly accurate, with important constraints related to the limited radiometric resolution of these data sets. Additional, more sophisticated hyperspectral data are scheduled for collection in 2011, along with further field work.


2013 ◽  
Vol 150 (6) ◽  
pp. 1103-1126 ◽  
Author(s):  
DETA GASSER ◽  
ARILD ANDRESEN

AbstractThe tectonic origin of pre-Devonian rocks of Svalbard has long been a matter of debate. In particular, the origin and assemblage of pre-Devonian rocks of western Spitsbergen, including a blueschist-eclogite complex in Oscar II Land, are enigmatic. We present detrital zircon U–Pb LA-ICP-MS data from six Mesoproterozoic to Carboniferous samples and one U–Pb TIMS zircon age from an orthogneiss from Oscar II Land in order to discuss tectonic models for this region. Variable proportions of Palaeo- to Neoproterozoic detritus dominate the metasedimentary samples. The orthogneiss has an intrusion age of 927 ± 3 Ma. Comparison with detrital zircon age spectra from other units of similar depositional age within the North Atlantic region indicates that Oscar II Land experienced the following tectonic history: (1) the latest Mesoproterozoic sequence was part of a successor basin which originated close to the Grenvillian–Sveconorwegian orogen, and which was intruded byc. 980–920 Ma plutons; (2) the Neoproterozoic sediments were deposited in a large-scale basin which stretched along the Baltoscandian margin; (3) the eclogite-blueschist complex and the overlying Ordovician–Silurian sediments probably formed to the north of the Grampian/Taconian arc; (4) strike-slip movements assembled the western coast of Spitsbergen outside of, and prior to, the main Scandian collision; and (5) the remaining parts of Svalbard were assembled by strike-slip movements during the Devonian. Our study confirms previous models of complex Caledonian terrane amalgamation with contrasting tectonic histories for the different pre-Devonian terranes of Svalbard and particularly highlights the non-Laurentian origin of Oscar II Land.


Sign in / Sign up

Export Citation Format

Share Document